python的常用模块之collections模块详解

脚本专栏 发布日期:2025/1/27 浏览次数:1

正在浏览:python的常用模块之collections模块详解

认识模块 

什么是模块?

常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。

但其实import加载的模块分为四个通用类别: 
   1 使用python编写的代码(.py文件)
   2 已被编译为共享库或DLL的C或C++扩展
   3 包好一组模块的包
   4 使用C编写并链接到python解释器的内置模块

为何要使用模块?

如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。

随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用,

常用模块 

1. collections模块

在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

1.namedtuple: 生成可以使用名字来访问元素内容的tuple
 2.deque: 双端队列,可以快速的从另外一侧追加和推出对象
3.Counter: 计数器,主要用来计数
4.OrderedDict: 有序字典
5.defaultdict: 带有默认值的字典

我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

p = (1, 2)

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

这时,namedtuple就派上了用场:

用法:namedtuple('名称', [属性list]):

> from collections import namedtuple
> Point = namedtuple('Point', ['x', 'y'])
> p = Point(1, 2)
> p.x
1
> p.y
2

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

from collections import namedtuple
Cirle = namedtuple("Cirle",['x','y','z'])
c = Cirle(4,5,6)
print(c.x,c.y,c.z)
OutPut:
4 5 6

2. deque

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

> from collections import deque
> q = deque(['a', 'b', 'c'])
> q.append('x')
> q.appendleft('y')
> q
deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。

from collections import deque
dq = deque([1,2])
dq.append('a')  # 从后面放数据 [1,2,'a']
dq.appendleft('b') # 从前面放数据 ['b',1,2,'a']
dq.insert(2,3)  #['b',1,3,2,'a']
print(dq.pop())   # 从后面取数据
print(dq.pop())   # 从后面取数据
print(dq.popleft()) # 从前面取数据
print(dq)
Output:
a
2
b
deque([1, 3])

3. OrderedDict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict:

> from collections import OrderedDict
> d = dict([('a', 1), ('b', 2), ('c', 3)])
> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])

#有序字典
from collections import OrderedDict
od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
print(od) # OrderedDict的Key是有序的
print(od['a'])
for k in od:
  print(k)

OutPut:
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
1
a
b
c

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序

4. defaultdict

使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:

> from collections import defaultdict
> dd = defaultdict(lambda: 'N/A')
> dd['key1'] = 'abc'
> dd['key1'] # key1存在
'abc'
> dd['key2'] # key2不存在,返回默认值
'N/A'

5. Counter

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

c = Counter('abcdeabcdabcaba')
print c
输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})

创建

下面的代码说明了Counter类创建的四种方法:

Counter类的创建 :

> c = Counter() # 创建一个空的Counter类
> c = Counter('gallahad') # 从一个可iterable对象(list、tuple、dict、字符串等)创建
> c = Counter({'a': 4, 'b': 2}) # 从一个字典对象创建
> c = Counter(a=4, b=2) # 从一组键值对创建

计数值的访问与缺失的键

当所访问的键不存在时,返回0,而不是KeyError;否则返回它的计数。

计数值的访问

> c = Counter("abcdefgab")
> c["a"]
2
> c["c"]
1
> c["h"]
0

计数器的更新(update和subtract)

可以使用一个iterable对象或者另一个Counter对象来更新键值。

计数器的更新包括增加和减少两种。其中,增加使用update()方法:

计数器的更新(update)

> c = Counter('which')
> c.update('witch') # 使用另一个iterable对象更新
> c['h']
3
> d = Counter('watch')
> c.update(d) # 使用另一个Counter对象更新
> c['h']
4

减少则使用subtract()方法:

计数器的更新(subtract)

> c = Counter('which')
> c.subtract('witch') # 使用另一个iterable对象更新
> c['h']
1
> d = Counter('watch')
> c.subtract(d) # 使用另一个Counter对象更新
> c['a']
-1

键的修改和删除

当计数值为0时,并不意味着元素被删除,删除元素应当使用del。

> c = Counter("abcdcba")
> c
Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1})
> c["b"] = 0
> c
Counter({'a': 2, 'c': 2, 'd': 1, 'b': 0})
> del c["a"]
> c
Counter({'c': 2, 'b': 2, 'd': 1})

elements()

返回一个迭代器。元素被重复了多少次,在该迭代器中就包含多少个该元素。元素排列无确定顺序,个数小于1的元素不被包含。

elements()方法

> c = Counter(a=4, b=2, c=0, d=-2)
> list(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']

most_common([n])

返回一个TopN列表。如果n没有被指定,则返回所有元素。当多个元素计数值相同时,排列是无确定顺序的。
most_common()方法

> c = Counter('abracadabra')
> c.most_common()
[('a', 5), ('r', 2), ('b', 2), ('c', 1), ('d', 1)]
> c.most_common(3)
[('a', 5), ('r', 2), ('b', 2)] 

浅拷贝copy

> c = Counter("abcdcba")
> c
Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1})
> d = c.copy()
> d
Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1})

算术和集合操作

+、-、&、|操作也可以用于Counter。其中&和|操作分别返回两个Counter对象各元素的最小值和最大值。需要注意的是,得到的Counter对象将删除小于1的元素。

Counter对象的算术和集合操作

> c = Counter(a=3, b=1)
> d = Counter(a=1, b=2)
> c + d # c[x] + d[x]
Counter({'a': 4, 'b': 3})
> c - d # subtract(只保留正数计数的元素)
Counter({'a': 2})
> c & d # 交集: min(c[x], d[x])
Counter({'a': 1, 'b': 1})
> c | d # 并集: max(c[x], d[x])
Counter({'a': 3, 'b': 2})

其他常用操作

下面是一些Counter类的常用操作,来源于Python官方文档

Counter类常用操作

sum(c.values()) # 所有计数的总数
c.clear() # 重置Counter对象,注意不是删除
list(c) # 将c中的键转为列表
set(c) # 将c中的键转为set
dict(c) # 将c中的键值对转为字典
c.items() # 转为(elem, cnt)格式的列表
Counter(dict(list_of_pairs)) # 从(elem, cnt)格式的列表转换为Counter类对象
c.most_common()[:-n:-1] # 取出计数最少的n个元素
c += Counter() # 移除0和负值

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。