脚本专栏 发布日期:2025/1/24 浏览次数:1
这个阶段一直在做和梯度一类算法相关的东西,索性在这儿做个汇总:
一、算法论述
梯度下降法(gradient descent)别名最速下降法(曾经我以为这是两个不同的算法-.-),是用来求解无约束最优化问题的一种常用算法。下面以求解线性回归为题来叙述:
则这一组向量参数选择的好与坏就需要一个机制来评估,据此我们提出了其损失函数为(选择均方误差):
如果的值取到了0,意味着我们构造出了极好的拟合函数,也即选择出了最好的值,但这基本是达不到的,我们只能使得其无限的接近于0,当满足一定精度时停止迭代。
那么问题来了如何调整使得取得的值越来越小呢?方法很多,此处以梯度下降法为例:
其中为步长因子,这里我们取定值,但注意如果取得过小会导致收敛速度过慢,过大则损失函数可能不会收敛,甚至逐渐变大,可以在下述的代码中修改的值来进行验证。后面我会再写一篇关于随机梯度下降法的文章,其实与梯度下降法最大的不同就在于一个求和符号。
二、代码实现
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d from matplotlib import style #构造数据 def get_data(sample_num=10000): """ 拟合函数为 y = 5*x1 + 7*x2 :return: """ x1 = np.linspace(0, 9, sample_num) x2 = np.linspace(4, 13, sample_num) x = np.concatenate(([x1], [x2]), axis=0).T y = np.dot(x, np.array([5, 7]).T) return x, y #梯度下降法 def GD(samples, y, step_size=0.01, max_iter_count=1000): """ :param samples: 样本 :param y: 结果value :param step_size: 每一接迭代的步长 :param max_iter_count: 最大的迭代次数 :param batch_size: 随机选取的相对于总样本的大小 :return: """ #确定样本数量以及变量的个数初始化theta值 m, var = samples.shape theta = np.zeros(2) y = y.flatten() #进入循环内 print(samples) loss = 1 iter_count = 0 iter_list=[] loss_list=[] theta1=[] theta2=[] #当损失精度大于0.01且迭代此时小于最大迭代次数时,进行 while loss > 0.001 and iter_count < max_iter_count: loss = 0 #梯度计算 theta1.append(theta[0]) theta2.append(theta[1]) for i in range(m): h = np.dot(theta,samples[i].T) #更新theta的值,需要的参量有:步长,梯度 for j in range(len(theta)): theta[j] = theta[j] - step_size*(1/m)*(h - y[i])*samples[i,j] #计算总体的损失精度,等于各个样本损失精度之和 for i in range(m): h = np.dot(theta.T, samples[i]) #每组样本点损失的精度 every_loss = (1/(var*m))*np.power((h - y[i]), 2) loss = loss + every_loss print("iter_count: ", iter_count, "the loss:", loss) iter_list.append(iter_count) loss_list.append(loss) iter_count += 1 plt.plot(iter_list,loss_list) plt.xlabel("iter") plt.ylabel("loss") plt.show() return theta1,theta2,theta,loss_list def painter3D(theta1,theta2,loss): style.use('ggplot') fig = plt.figure() ax1 = fig.add_subplot(111, projection='3d') x,y,z = theta1,theta2,loss ax1.plot_wireframe(x,y,z, rstride=5, cstride=5) ax1.set_xlabel("theta1") ax1.set_ylabel("theta2") ax1.set_zlabel("loss") plt.show() def predict(x, theta): y = np.dot(theta, x.T) return y if __name__ == '__main__': samples, y = get_data() theta1,theta2,theta,loss_list = GD(samples, y) print(theta) # 会很接近[5, 7] painter3D(theta1,theta2,loss_list) predict_y = predict(theta, [7,8]) print(predict_y)
三、绘制的图像如下:
迭代次数与损失精度间的关系图如下:步长为0.01
变量、与损失函数loss之间的关系:(从初始化之后会一步步收敛到loss满足精度,之后、会变的稳定下来)
下面我们来看一副当步长因子变大后的图像:步长因子为0.5(很明显其收敛速度变缓了)
当步长因子设置为1.8左右时,其损失值已经开始震荡
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。