脚本专栏 发布日期:2025/1/23 浏览次数:1
查看TensorFlow中checkpoint内变量的几种方法
查看ckpt中变量的方法有三种:
注意:
1. 基于model来读取ckpt文件里的变量
1.首先建立model
2.从ckpt中恢复变量
with tf.Graph().as_default() as g: #建立model images, labels = cifar10.inputs(eval_data=eval_data) logits = cifar10.inference(images) top_k_op = tf.nn.in_top_k(logits, labels, 1) #从ckpt中恢复变量 sess = tf.Session() saver = tf.train.Saver() #saver = tf.train.Saver(...variables...) # 恢复部分变量时,只需要在Saver里指定要恢复的变量 save_path = 'ckpt的路径' saver.restore(sess, save_path) # 从ckpt中恢复变量
注意:基于model来读取ckpt中变量时,model和ckpt必须匹配。
2. 使用tf.train.NewCheckpointReader直接读取ckpt文件里的变量,使用tools.inspect_checkpoint里的print_tensors_in_checkpoint_file函数打印ckpt里的东西
#使用NewCheckpointReader来读取ckpt里的变量 from tensorflow.python import pywrap_tensorflow checkpoint_path = os.path.join(model_dir, "model.ckpt") reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path) #tf.train.NewCheckpointReader var_to_shape_map = reader.get_variable_to_shape_map() for key in var_to_shape_map: print("tensor_name: ", key) #print(reader.get_tensor(key))
#使用print_tensors_in_checkpoint_file打印ckpt里的内容 from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file print_tensors_in_checkpoint_file(file_name, #ckpt文件名字 tensor_name, # 如果为None,则默认为ckpt里的所有变量 all_tensors, # bool 是否打印所有的tensor,这里打印出的是tensor的值,一般不推荐这里设置为False all_tensor_names) # bool 是否打印所有的tensor的name #上面的打印ckpt的内部使用的是pywrap_tensorflow.NewCheckpointReader所以,掌握NewCheckpointReader才是王道
3.使用tools里的freeze_graph来读取ckpt
from tensorflow.python.tools import freeze_graph freeze_graph(input_graph, #=some_graph_def.pb input_saver, input_binary, input_checkpoint, #=model.ckpt output_node_names, #=softmax restore_op_name, filename_tensor_name, output_graph, #='./tmp/frozen_graph.pb' clear_devices, initializer_nodes, variable_names_whitelist='', variable_names_blacklist='', input_meta_graph=None, input_saved_model_dir=None, saved_model_tags='serve', checkpoint_version=2) #freeze_graph_test.py讲述了怎么使用freeze_grapg。
使用freeze_graph可以将图和ckpt进行合并。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。