脚本专栏 发布日期:2025/1/23 浏览次数:1
numpy是无法直接判断出由数值与字符混合组成的数组中的数值型数据的,因为由数值类型和字符类型组成的numpy数组已经不是数值类型的数组了,而是dtype='<U11'。
1、math.isnan也不行,它只能判断float("nan"):
> import math > math.isnan(1) False > math.isnan('a') Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: a float is required > math.isnan(float("nan")) True >
2、np.isnan不可用,因为np.isnan只能用于数值型与np.nan组成的numpy数组:
> import numpy as np > test1=np.array([1,2,'aa',3]) > np.isnan(test1) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''sa fe'' > test2=np.array([1,2,np.nan,3]) > np.isnan(test2) array([False, False, True, False], dtype=bool) >
解决办法:
方法1:将numpy数组转换为python的list,然后通过filter过滤出数值型的值,再转为numpy, 但是,有一个严重的问题,无法保证原来的索引
> import numpy as np > test1=np.array([1,2,'aa',3]) > list1=list(test1) > def filter_fun(x): ... try: ... return isinstance(float(x),(float)) ... except: ... return False ... > list(filter(filter_fun,list1)) ['1', '2', '3'] > np.array(filter(filter_fun,list1)) array(<filter object at 0x0339CA30>, dtype=object) > np.array(list(filter(filter_fun,list1))) array(['1', '2', '3'], dtype='<U1') > np.array([float(x) for x in filter(filter_fun,list1)]) array([ 1., 2., 3.]) >
方法2:利用map制作bool数组,然后再过滤数据和索引:
> import numpy as np > test1=np.array([1,2,'aa',3]) > list1=list(test1) > def filter_fun(x): ... try: ... return isinstance(float(x),(float)) ... except: ... return False ... > import pandas as pd > test=pd.DataFrame(test1,index=[1,2,3,4]) > test 0 1 1 2 2 3 aa 4 3 > index=test.index > index Int64Index([1, 2, 3, 4], dtype='int64') > bool_index=map(filter_fun,list1) > bool_index=list(bool_index) #bool_index这样的迭代结果只能list一次,一次再list时会是空,所以保存一下list的结果 > bool_index [True, True, False, True] > new_data=test1[np.array(bool_index)] > new_data array(['1', '2', '3'], dtype='<U11') > new_index=index[np.array(bool_index)] > new_index Int64Index([1, 2, 4], dtype='int64') > test2=pd.DataFrame(new_data,index=new_index) > test2 0 1 1 2 2 4 3 >
以上这篇numpy判断数值类型、过滤出数值型数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。