脚本专栏 发布日期:2025/1/24 浏览次数:1
本文实例为大家分享了基于神经卷积网络的人脸识别,供大家参考,具体内容如下
1.人脸识别整体设计方案
客_服交互流程图:
2.服务端代码展示
sk = socket.socket() # s.bind(address) 将套接字绑定到地址。在AF_INET下,以元组(host,port)的形式表示地址。 sk.bind(("172.29.25.11",8007)) # 开始监听传入连接。 sk.listen(True) while True: for i in range(100): # 接受连接并返回(conn,address),conn是新的套接字对象,可以用来接收和发送数据。address是连接客户端的地址。 conn,address = sk.accept() # 建立图片存储路径 path = str(i+1) + '.jpg' # 接收图片大小(字节数) size = conn.recv(1024) size_str = str(size,encoding="utf-8") size_str = size_str[2 :] file_size = int(size_str) # 响应接收完成 conn.sendall(bytes('finish', encoding="utf-8")) # 已经接收数据大小 has_size has_size = 0 # 创建图片并写入数据 f = open(path,"wb") while True: # 获取 if file_size == has_size: break date = conn.recv(1024) f.write(date) has_size += len(date) f.close() # 图片缩放 resize(path) # cut_img(path):图片裁剪成功返回True;失败返回False if cut_img(path): yuchuli() result = test('test.jpg') conn.sendall(bytes(result,encoding="utf-8")) else: print('falue') conn.sendall(bytes('人眼检测失败,请保持图片眼睛清晰',encoding="utf-8")) conn.close()
3.图片预处理
1)图片缩放
# 根据图片大小等比例缩放图片 def resize(path): image=cv2.imread(path,0) row,col = image.shape if row >= 2500: x,y = int(row/5),int(col/5) elif row >= 2000: x,y = int(row/4),int(col/4) elif row >= 1500: x,y = int(row/3),int(col/3) elif row >= 1000: x,y = int(row/2),int(col/2) else: x,y = row,col # 缩放函数 res=cv2.resize(image,(y,x),interpolation=cv2.INTER_CUBIC) cv2.imwrite(path,res)
2)直方图均衡化和中值滤波
# 直方图均衡化 eq = cv2.equalizeHist(img) # 中值滤波 lbimg=cv2.medianBlur(eq,3)
3)人眼检测
# -*- coding: utf-8 -*- # 检测人眼,返回眼睛数据 import numpy as np import cv2 def eye_test(path): # 待检测的人脸路径 imagepath = path # 获取训练好的人脸参数 eyeglasses_cascade = cv2.CascadeClassifier('haarcascade_eye_tree_eyeglasses.xml') # 读取图片 img = cv2.imread(imagepath) # 转为灰度图像 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # 检测并获取人眼数据 eyeglasses = eyeglasses_cascade.detectMultiScale(gray) # 人眼数为2时返回左右眼位置数据 if len(eyeglasses) == 2: num = 0 for (e_gx,e_gy,e_gw,e_gh) in eyeglasses: cv2.rectangle(img,(e_gx,e_gy),(e_gx+int(e_gw/2),e_gy+int(e_gh/2)),(0,0,255),2) if num == 0: x1,y1 = e_gx+int(e_gw/2),e_gy+int(e_gh/2) else: x2,y2 = e_gx+int(e_gw/2),e_gy+int(e_gh/2) num += 1 print('eye_test') return x1,y1,x2,y2 else: return False
4)人眼对齐并裁剪
# -*- coding: utf-8 -*- # 人眼对齐并裁剪 # 参数含义: # CropFace(image, eye_left, eye_right, offset_pct, dest_sz) # eye_left is the position of the left eye # eye_right is the position of the right eye # 比例的含义为:要保留的图像靠近眼镜的百分比, # offset_pct is the percent of the image you want to keep next to the eyes (horizontal, vertical direction) # 最后保留的图像的大小。 # dest_sz is the size of the output image # import sys,math from PIL import Image from eye_test import eye_test # 计算两个坐标的距离 def Distance(p1,p2): dx = p2[0]- p1[0] dy = p2[1]- p1[1] return math.sqrt(dx*dx+dy*dy) # 根据参数,求仿射变换矩阵和变换后的图像。 def ScaleRotateTranslate(image, angle, center =None, new_center =None, scale =None, resample=Image.BICUBIC): if (scale is None)and (center is None): return image.rotate(angle=angle, resample=resample) nx,ny = x,y = center sx=sy=1.0 if new_center: (nx,ny) = new_center if scale: (sx,sy) = (scale, scale) cosine = math.cos(angle) sine = math.sin(angle) a = cosine/sx b = sine/sx c = x-nx*a-ny*b d =-sine/sy e = cosine/sy f = y-nx*d-ny*e return image.transform(image.size, Image.AFFINE, (a,b,c,d,e,f), resample=resample) # 根据所给的人脸图像,眼睛坐标位置,偏移比例,输出的大小,来进行裁剪。 def CropFace(image, eye_left=(0,0), eye_right=(0,0), offset_pct=(0.2,0.2), dest_sz = (70,70)): # calculate offsets in original image 计算在原始图像上的偏移。 offset_h = math.floor(float(offset_pct[0])*dest_sz[0]) offset_v = math.floor(float(offset_pct[1])*dest_sz[1]) # get the direction 计算眼睛的方向。 eye_direction = (eye_right[0]- eye_left[0], eye_right[1]- eye_left[1]) # calc rotation angle in radians 计算旋转的方向弧度。 rotation =-math.atan2(float(eye_direction[1]),float(eye_direction[0])) # distance between them # 计算两眼之间的距离。 dist = Distance(eye_left, eye_right) # calculate the reference eye-width 计算最后输出的图像两只眼睛之间的距离。 reference = dest_sz[0]-2.0*offset_h # scale factor # 计算尺度因子。 scale =float(dist)/float(reference) # rotate original around the left eye # 原图像绕着左眼的坐标旋转。 image = ScaleRotateTranslate(image, center=eye_left, angle=rotation) # crop the rotated image # 剪切 crop_xy = (eye_left[0]- scale*offset_h, eye_left[1]- scale*offset_v) # 起点 crop_size = (dest_sz[0]*scale, dest_sz[1]*scale) # 大小 image = image.crop((int(crop_xy[0]),int(crop_xy[1]),int(crop_xy[0]+crop_size[0]),int(crop_xy[1]+crop_size[1]))) # resize it 重置大小 image = image.resize(dest_sz, Image.ANTIALIAS) return image def cut_img(path): image = Image.open(path) # 人眼识别成功返回True;否则,返回False if eye_test(path): print('cut_img') # 获取人眼数据 leftx,lefty,rightx,righty = eye_test(path) # 确定左眼和右眼位置 if leftx > rightx: temp_x,temp_y = leftx,lefty leftx,lefty = rightx,righty rightx,righty = temp_x,temp_y # 进行人眼对齐并保存截图 CropFace(image, eye_left=(leftx,lefty), eye_right=(rightx,righty), offset_pct=(0.30,0.30), dest_sz=(92,112)).save('test.jpg') return True else: print('falue') return False
4.用神经卷积网络训练数据
# -*- coding: utf-8 -*- from numpy import * import cv2 import tensorflow as tf # 图片大小 TYPE = 112*92 # 训练人数 PEOPLENUM = 42 # 每人训练图片数 TRAINNUM = 15 #( train_face_num ) # 单人训练人数加测试人数 EACH = 21 #( test_face_num + train_face_num ) # 2维=>1维 def img2vector1(filename): img = cv2.imread(filename,0) row,col = img.shape vector1 = zeros((1,row*col)) vector1 = reshape(img,(1,row*col)) return vector1 # 获取人脸数据 def ReadData(k): path = 'face_flip/' train_face = zeros((PEOPLENUM*k,TYPE),float32) train_face_num = zeros((PEOPLENUM*k,PEOPLENUM)) test_face = zeros((PEOPLENUM*(EACH-k),TYPE),float32) test_face_num = zeros((PEOPLENUM*(EACH-k),PEOPLENUM)) # 建立42个人的训练人脸集和测试人脸集 for i in range(PEOPLENUM): # 单前获取人 people_num = i + 1 for j in range(k): #获取图片路径 filename = path + 's' + str(people_num) + '/' + str(j+1) + '.jpg' #2维=>1维 img = img2vector1(filename) #train_face:每一行为一幅图的数据;train_face_num:储存每幅图片属于哪个人 train_face[i*k+j,:] = img/255 train_face_num[i*k+j,people_num-1] = 1 for j in range(k,EACH): #获取图片路径 filename = path + 's' + str(people_num) + '/' + str(j+1) + '.jpg' #2维=>1维 img = img2vector1(filename) # test_face:每一行为一幅图的数据;test_face_num:储存每幅图片属于哪个人 test_face[i*(EACH-k)+(j-k),:] = img/255 test_face_num[i*(EACH-k)+(j-k),people_num-1] = 1 return train_face,train_face_num,test_face,test_face_num # 获取训练和测试人脸集与对应lable train_face,train_face_num,test_face,test_face_num = ReadData(TRAINNUM) # 计算测试集成功率 def compute_accuracy(v_xs, v_ys): global prediction y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1}) correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1}) return result # 神经元权重 def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) # 神经元偏置 def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) # 卷积 def conv2d(x, W): # stride [1, x_movement, y_movement, 1] # Must have strides[0] = strides[3] = 1 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') # 最大池化,x,y步进值均为2 def max_pool_2x2(x): # stride [1, x_movement, y_movement, 1] return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') # define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 10304])/255. # 112*92 ys = tf.placeholder(tf.float32, [None, PEOPLENUM]) # 42个输出 keep_prob = tf.placeholder(tf.float32) x_image = tf.reshape(xs, [-1, 112, 92, 1]) # print(x_image.shape) # [n_samples, 112,92,1] # 第一层卷积层 W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32 b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 112x92x32 h_pool1 = max_pool_2x2(h_conv1) # output size 56x46x64 # 第二层卷积层 W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64 b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 56x46x64 h_pool2 = max_pool_2x2(h_conv2) # output size 28x23x64 # 第一层神经网络全连接层 W_fc1 = weight_variable([28*23*64, 1024]) b_fc1 = bias_variable([1024]) # [n_samples, 28, 23, 64] - [n_samples, 28*23*64] h_pool2_flat = tf.reshape(h_pool2, [-1, 28*23*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 第二层神经网络全连接层 W_fc2 = weight_variable([1024, PEOPLENUM]) b_fc2 = bias_variable([PEOPLENUM]) prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2)) # 交叉熵损失函数 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = tf.matmul(h_fc1_drop, W_fc2)+b_fc2, labels=ys)) regularizers = tf.nn.l2_loss(W_fc1) + tf.nn.l2_loss(b_fc1) +tf.nn.l2_loss(W_fc2) + tf.nn.l2_loss(b_fc2) # 将正则项加入损失函数 cost += 5e-4 * regularizers # 优化器优化误差值 train_step = tf.train.AdamOptimizer(1e-4).minimize(cost) sess = tf.Session() init = tf.global_variables_initializer() saver = tf.train.Saver() sess.run(init) # 训练1000次,每50次输出测试集测试结果 for i in range(1000): sess.run(train_step, feed_dict={xs: train_face, ys: train_face_num, keep_prob: 0.5}) if i % 50 == 0: print(sess.run(prediction[0],feed_dict= {xs: test_face,ys: test_face_num,keep_prob: 1})) print(compute_accuracy(test_face,test_face_num)) # 保存训练数据 save_path = saver.save(sess,'my_data/save_net.ckpt')
5.用神经卷积网络测试数据
# -*- coding: utf-8 -*- # 两层神经卷积网络加两层全连接神经网络 from numpy import * import cv2 import tensorflow as tf # 神经网络最终输出个数 PEOPLENUM = 42 # 2维=>1维 def img2vector1(img): row,col = img.shape vector1 = zeros((1,row*col),float32) vector1 = reshape(img,(1,row*col)) return vector1 # 神经元权重 def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) # 神经元偏置 def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) # 卷积 def conv2d(x, W): # stride [1, x_movement, y_movement, 1] # Must have strides[0] = strides[3] = 1 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') # 最大池化,x,y步进值均为2 def max_pool_2x2(x): # stride [1, x_movement, y_movement, 1] return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') # define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 10304])/255. # 112*92 ys = tf.placeholder(tf.float32, [None, PEOPLENUM]) # 42个输出 keep_prob = tf.placeholder(tf.float32) x_image = tf.reshape(xs, [-1, 112, 92, 1]) # print(x_image.shape) # [n_samples, 112,92,1] # 第一层卷积层 W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32 b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 112x92x32 h_pool1 = max_pool_2x2(h_conv1) # output size 56x46x64 # 第二层卷积层 W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64 b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 56x46x64 h_pool2 = max_pool_2x2(h_conv2) # output size 28x23x64 # 第一层神经网络全连接层 W_fc1 = weight_variable([28*23*64, 1024]) b_fc1 = bias_variable([1024]) # [n_samples, 28, 23, 64] - [n_samples, 28*23*64] h_pool2_flat = tf.reshape(h_pool2, [-1, 28*23*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # 第二层神经网络全连接层 W_fc2 = weight_variable([1024, PEOPLENUM]) b_fc2 = bias_variable([PEOPLENUM]) prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2)) sess = tf.Session() init = tf.global_variables_initializer() # 下载训练数据 saver = tf.train.Saver() saver.restore(sess,'my_data/save_net.ckpt') # 返回签到人名 def find_people(people_num): if people_num == 41: return '任童霖' elif people_num == 42: return 'LZT' else: return 'another people' def test(path): # 获取处理后人脸 img = cv2.imread(path,0)/255 test_face = img2vector1(img) print('true_test') # 计算输出比重最大的人及其所占比重 prediction1 = sess.run(prediction,feed_dict={xs:test_face,keep_prob:1}) prediction1 = prediction1[0].tolist() people_num = prediction1.index(max(prediction1))+1 result = max(prediction1)/sum(prediction1) print(result,find_people(people_num)) # 神经网络输出最大比重大于0.5则匹配成功 if result > 0.50: # 保存签到数据 qiandaobiao = load('save.npy') qiandaobiao[people_num-1] = 1 save('save.npy',qiandaobiao) # 返回 人名+签到成功 print(find_people(people_num) + '已签到') result = find_people(people_num) + ' 签到成功' else: result = '签到失败' return result
神经卷积网络入门简介
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。