脚本专栏 发布日期:2025/1/22 浏览次数:1
1. 概述
JSON (JavaScript Object Notation)是一种使用广泛的轻量数据格式. Python标准库中的json模块提供了JSON数据的处理功能.
Python中一种非常常用的基本数据结构就是字典(Dictionary). 它的典型结构如下:
d = { 'a': 123, 'b': { 'x': ['A', 'B', 'C'] } }
而JSON的结构如下:
{ "a": 123, "b": { "x": ["A", "B", "C"] } }
可以看到, Dictionary和JSON非常接近, 而Python中的json库提供的主要功能, 也是两者之间的转换.
2. 读取JSON
json.loads方法可以将包含了一个JSON数据的str, bytes或者bytearray对象, 转化为一个Python Dictionary. 它的完型接口签名如下:
复制代码 代码如下:json.loads(s, *, encoding=None, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw)
2.1 最简单的例子
json.loads最基本的使用方式就是将一个包含JSON数据的str传递给这个方法:
> json.loads('{"a": 123}') {'a': 123}
注意
在Python中, str值可以放在一对单引号中, 也可以放在一对双引号中:
> 'ABC' == "ABC" True
所以, 在定义Dictionary的str类型的键和值的时候, 使用单引号或者双引号都是合法和等价的:
> {"a": 'ABC'} == {'a': "ABC"} True
但是, 在JSON中, 字符串数据只能放在双引号中, 因而json.loads方法处理的字符串的JSON内容中, 字符串必须使用双引号. 否则就会发生解码错误:
> json.loads("{'a': 123}")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/__init__.py", line 354, in loads
return _default_decoder.decode(s)
File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/decoder.py", line 339, in decode
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/decoder.py", line 355, in raw_decode
obj, end = self.scan_once(s, idx)
json.decoder.JSONDecodeError: Expecting property name enclosed in double quotes: line 1 column 2 (char 1)
如果被处理的Python字符串是包含在双引号中的, 那么JSON中的双引号就需要转义:
> json.loads("{\"a\": 123}") {'a': 123}
2.2 bytes和bytearray数据
对于内容是JSON数据的bytes和bytearray, json.loads方法也可以处理:
> json.loads('{"a": 123}'.encode('UTF-8')) {'a': 123} > json.loads(bytearray('{"a": 123}', 'UTF-8')) {'a': 123}
2.3 编码格式
json.loads的第二个参数是encoding没有实际作用.
由于Python 3中str类型总是使用UTF-8编码, 所以s参数为str类型时, json.loads方法自动使用UTF-8编码. 并且, str不能以BOM字节开头.
当s参数为bytes或者bytearray时, json.loads方法会自动判断为UTF-8, UTF-16还是UTF-32编码. 默认也是将其按照UTF-8编码转化为str对象进行后续处理.
2.4 数据类型转换
JSON可以表示四种主类型数据
以及两结数据结构
默认实现中, JSON和Python之间的数据转换对应关系如下表:
JSON
Python
object
dict
array
list
string
str
number (int)
int
number (real)
float
true
True
false
False
null
None
实际转换情况如下例:
> json.loads(""" ... { ... "obj": { ... "str": "ABC", ... "int": 123, ... "float": -321.89, ... "bool_true": true, ... "bool_false": false, ... "null": null, ... "array": [1, 2, 3] ... } ... }""") {'obj': {'str': 'ABC', 'int': 123, 'float': -321.89, 'bool_true': True, 'bool_false': False, 'null': None, 'array': [1, 2, 3]}}
对于JSON中数字number类型的数据, 有以下几点需要注意:
1.JSON中的实数real number类型的精度不能超过Python中的float类型的精度范围, 否则就有精度损失. 如下例:
> json.loads('3.141592653589793238462643383279') 3.141592653589793
2.JSON标准不包括非数字NaN, 正无穷Infinity和负无穷-Infinity, 但是json.loads方法默认会将JSON字符串中的NaN, Infinity, -Infinity转化为Python中的float('nan'), float('inf')和float('-inf'). 注意, 这里JSON中的NaN, Infinity, -Infinity必须大小写正确并且拼写完整. 如下例
> json.loads('{"inf": Infinity, "nan": NaN, "ninf": -Infinity}') {'inf': inf, 'nan': nan, 'ninf': -inf}
2.5 自定义JSON对象转换类型
json.loads默认将JSON中的对象数据转化为Dictionary类型, object_hook参数可以用来改变构造出的对象.
object_hook接受一个函数, 这个函数的输入参数为JSON中对象数据转化出的Dictionary对象, 其返回值则为自定义的对象. 如下例所示:
> class MyJSONObj: ... def __init__(self, x): ... self.x = x ... > def my_json_obj_hook(data): ... print('obj_hook data: %s' % data) ... return MyJSONObj(data['x']) ... > result = json.loads('{"x": 123}', object_hook=my_json_obj_hook) obj_hook data: {'x': 123} > type(result) <class '__main__.MyJSONObj'> > result.x 123
当JSON中的对象有嵌套时, json.loads方法会按照深度优先的方式遍历对象树, 将各层的对象数据传递给object_hook. 叶节点的JSON对象构造出的Python对象, 会作为父节点的一个值, 传递给父节点的object_hook方法. 如下例:
> class MyJSONObj: ... def __init__(self, x, y): ... self.x = x ... self.y = y ... > def my_json_obj_hook(data): ... print('obj_hook data: %s' % data) ... return MyJSONObj(**data) ... > result = json.loads('{"x": {"x": 11, "y": 12}, "y": {"x": 21, "y":22}}', object_hook=my_json_obj_hook) obj_hook data: {'x': 11, 'y': 12} obj_hook data: {'x': 21, 'y': 22} obj_hook data: {'x': <__main__.MyJSONObj object at 0x10417ef28>, 'y': <__main__.MyJSONObj object at 0x10417ed68>}
除了object_hook参数以外, 还有一个object_pairs_hook参数. 这个参数同样可以用来改变json.loads方法构造出的Python对象的类型. 这个参数和object_hook的不同, 在于传入的方法所接收到的输入数据不是一个Dictionary, 而是一个包含tuple的list. 每个tuple都有两个元素, 第一个元素是JSON数据中的键, 第二个元素是这个键对应的值. 如JSON对象
{ "a": 123, "b": "ABC" }
对应的输入数据是
[
('a': 123),
('b', 'ABC')
]
当调用json.loads方法时, 同时指定object_hook和object_pairs_hook, object_pairs_hook会覆盖object_hook参数.
2.6 自定义JSON数字转换类型
默认实现中, JSON中的实数被转换为Python的float类型, 整数被转换为int或者long类型. 类似object_hook, 我们可以通过parse_float和parse_int参数指定自定义的转换逻辑. 这两个方法的输入参数为表示JSON实数或者整数的字符串. 下例中, 我们将实数转换为numpy.float64, 将整数转换为numpy.int64:
> def my_parse_float(f): ... print('%s(%s)' % (type(f), f)) ... return numpy.float64(f) ... > def my_parse_int(i): ... print('%s(%s)' % (type(i), i)) ... return numpy.int64(i) ... > result = json.loads('{"i": 123, "f": 321.45}', parse_float=my_parse_float, parse_int=my_parse_int) <type 'str'>(123) <type 'str'>(321.45) > type(result['i']) <type 'numpy.int64'> > type(result['f']) <type 'numpy.float64'>
2.6.1 自定义NaN, Infinity和-Infinity转换类型
由于标准JSON数据不支持NaN, Infinity和-Infinity, 所以parse_float并不会接收到这几个值. 当需要自定义这几个值转换的对象的时候, 就需要使用另外一个接口parse_constant. 比如下例中, 将这几个值同样转换为numpy.float64类型:
> def my_parse_constant(data): ... print('%s(%s)' % (type(data), data)) ... return numpy.float64(data) ... > result = json.loads('{"inf": Infinity, "nan": NaN, "ninf": -Infinity}', parse_constant=my_parse_constant) <type 'str'>(Infinity) <type 'str'>(NaN) <type 'str'>(-Infinity) > result['inf'] inf > type(result['inf']) <type 'numpy.float64'>
2.7 非对象顶级值
根据JSON规范, 一个JSON数据中, 可以只包含一个值, 而不是一个完整的对象. 这个值可以是一个字符串, 一个数字, 布尔值, 空值, 或者一个数组. 除了这三种JSON规范中给出的类型, 还可以是NaN, Infinity或者-Infinity:
> json.loads('"hello"') 'hello' > json.loads('123') 123 > json.loads('123.34') 123.34 > json.loads('true') True > json.loads('false') False > print(json.loads('null')) None > json.loads('[1, 2, 3]') [1, 2, 3]
2.8 重复键名
在同一层级JSON对象中, 不应当出现重复的键名, 不过JSON规范中没有给出这种情况的处理标准. 在json.loads中, 当JSON数据中有重复键名, 则后面的键值会覆盖前面的:
> json.loads('{"a": 123, "b": "ABC", "a": 321}') {'a': 321, 'b': 'ABC'}
2.9 处理JSON数据文件
当JSON数据是保存在一个文件中的时候, json.load方法可以用来从这个文件中读取数据, 并转换为Python对象. json.load方法的第一个参数就是指向JSON数据文件的文件类型对象.
比如/tmp/data.json文件的内含如下:
{ "a": 123, "b": "ABC" }
可以使用下例中的代码来读取并转化文件中的JSON数据:
> with open('/tmp/data.json') as jf: ... json.load(jf) ... {u'a': 123, u'b': u'ABC'}
除了文件类型的对象, 只要是实现了read方法的类文件对象, 都可以作为fp参数, 比如下例中的io.StringIO:
> sio = io.StringIO('{"a": 123}') > json.load(sio) {'a': 123}
json.load方法的其他参数的意义和使用方法和上文中的json.loads相同, 这里不再赘述.
3 生成JSON
json.dumps方法可以将Python对象转换为一个表示JONS数据的字符串. 它的完整接口签名如下:
复制代码 代码如下:json.dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw)
它的第一个参数obj即为要转换的数据对象.
> json.dumps({'a': 123, 'b': 'ABC'}) '{"a": 123, "b": "ABC"}'
3.1 编码格式
json.dumps的ensure_ascii参数用来控制生成的JSON字符串的编码. 其默认值为True, 此时, 所有的非ASCII码字条都会转义. 如果不希望自动进行转义, 则会保持原有编码, 限UTF-8. 如下例所示:
> json.dumps({'数字': 123, '字符': '一二三'}) '{"\\u6570\\u5b57": 123, "\\u5b57\\u7b26": "\\u4e00\\u4e8c\\u4e09"}' > json.dumps({'数字': 123, '字符': '一二三'}, ensure_ascii=False) '{"数字": 123, "字符": "一二三"}'
3.2 数据类型转换
在默认实现中, json.dumps可以处理的Python对象, 及其所有的属性值, 类型必须为dict, list, tuple, str, float或者int. 这些类型与JSON的数据转换关系如下表:
Python
JSON
dict
object
list, tuple
array
str
string
int, float, int-&float-derived emuns
number
True
true
False
false
None
null
实际转换情况如下示例:
> json.dumps( ... { ... 'str': 'ABC', ... 'int': 123, ... 'float': 321.45, ... 'bool_true': True, ... 'bool_false': False, ... 'none': None, ... 'list': [1, 2, 3], ... 'tuple': [12, 34] ... } ... ) '{"str": "ABC", "int": 123, "float": 321.45, "bool_true": true, "bool_flase": false, "none": null, "list": [1, 2, 3], "tuple": [12, 34]}'
虽然JSON标准规范不支持NaN, Infinity和-Infinity, 但是json.dumps的默认实现会将float('nan'), float('inf')和float('-inf')转换为常量NaN, Infinity, 和-Infinity. 如下例所示:
> json.dumps( ... { ... 'nan': float('nan'), ... 'inf': float('inf'), ... '-inf': float('-inf') ... } ... ) '{"nan": NaN, "inf": Infinity, "-inf": -Infinity}'
由于这些常量可能会导致生成的JSON字符串不能被其他的JSON实现处理, 为了防止这种情况出现, 可以将json.dumps的allow_nan参数设置为True. 此时, 当处理的Python对象中出现这些值时, json.dumps方法会抛出异常.
3.3 循环引用
json.dumps方法会检查Python对象中是否有循环引用, 如果发现了循环引用, 就会抛出异常. 如下例所示:
> circular_obj = {} > circular_obj['self'] = circular_obj > circular_obj {'self': {...}} > json.dumps(circular_obj) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/__init__.py", line 231, in dumps return _default_encoder.encode(obj) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/encoder.py", line 199, in encode chunks = self.iterencode(o, _one_shot=True) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/encoder.py", line 257, in iterencode return _iterencode(o, 0) ValueError: Circular reference detected
如果不希望json.dumps方法检查循环引用, 可以将参数check_circular设置为False. 但如果此时Python对象中有循环引用, 有可能发生递归嵌套过深的错误或者其他错误, 这么做是比较危险的. 如下例所示:
> json.dumps(circular_obj, check_circular=False) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/__init__.py", line 238, in dumps **kw).encode(obj) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/encoder.py", line 199, in encode chunks = self.iterencode(o, _one_shot=True) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/encoder.py", line 257, in iterencode return _iterencode(o, 0) RecursionError: maximum recursion depth exceeded while encoding a JSON object
3.4 JSON字符串输出格式
json.dumps方法的indent参数可以用来控制JSON字符串的换行和缩进效果.
indent参数默认值为None. 此时, JSON字符串不会有换行和缩进效果. 如下示:
> print(json.dumps({'a': 123, 'b': {'x': 321, 'y': 'ABC'}})) {"a": 123, "b": {"x": 321, "y": "ABC"}}
当indent为0或者负数时, JSON字符会包含换行:
> print(json.dumps({'a': 123, 'b': {'x': 321, 'y': 'ABC'}}, indent=-1)) { "a": 123, "b": { "x": 321, "y": "ABC" } } > print(json.dumps({'a': 123, 'b': {'x': 321, 'y': 'ABC'}}, indent=0)) { "a": 123, "b": { "x": 321, "y": "ABC" } }
而当indent为正整数时, 除了换行, JSON还会以指定数量的空格为单位在对象层次间进行缩进:
> print(json.dumps({'a': 123, 'b': {'x': 321, 'y': 'ABC'}}, indent=2)) { "a": 123, "b": { "x": 321, "y": "ABC" } }
indent还可以是str, 此时, JSON会以str内容为单位进行缩进, 比如制表符\t:
> print(json.dumps({'a': 123, 'b': {'x': 321, 'y': 'ABC'}}, indent='\t')) { "a": 123, "b": { "x": 321, "y": "ABC" } }
json.dumps的另外一个参数separators可以用来设置输出的分隔符. 这个参数的值应当是一个有两个元素的tuple. 其第一个值为成员间的分隔符, 第二个值为键值之间的分隔符. 其默认值也会随上文中的indent参数影响. 当indent为None时, separators的默认值为(', ', ': '), 即分隔符后都有一个空格. 当indent不为None时, 其默认值则为(',', ':'), 即只有键值间分隔符后会有一个空格, 而元素间分隔符则不带空格, 因为此时会有换行.
separators参数的一种可能的使用场景是希望移除所有的非必要格式字符, 以此来减小JSON字符串的大小. 此时可以将separator设置为(',', ';'), 并不设置indent参数, 或者将其显式设置为None:
> print(json.dumps({'a': 123, 'b': {'x': 321, 'y': 'ABC'}}, indent=None, separators=(',', ':'))) {"a":123,"b":{"x":321,"y":"ABC"}}
3.5 转换自定义Python对象
json.dumps的默认实现只能转换Dictionary类型的对象. 如果想要转换自定义对象, 需要使用default参数. 这个参数接收一个函数, 这个函数的参数是一个要转换的Python对象, 返回值是能够表示这个Python对象的Dictionary对象. default函数会从对象引用树的顶层开始, 逐层遍历整个对象引用树. 因此, 不用自己实现对象树的遍历逻辑, 只需要处理当前层次的对象. 如下例所示:
> class MyClass: ... def __init__(self, x, y): ... self.x = x ... self.y = y ... > def my_default(o): ... if isinstance(o, MyClass): ... print('%s.y: %s' % (type(o), o.y)) ... return {'x': o.x, 'y': o.y} ... print(o) ... return o ... > obj = MyClass(x=MyClass(x=1, y=2), y=11) > json.dumps(obj, default=my_default) <class '__main__.MyClass'>.y: 11 <class '__main__.MyClass'>.y: 2 '{"x": {"x": 1, "y": 2}, "y": 11}'
3.6 非字符串类型键名
在Python中, 只是可哈希(hashable)的对象和数据都可以做为Dictionary对象的键, 而JSON规范中则只能使用字符串做为键名. 所以在json.dumps的实现中, 对这个规则进行了检查, 不过键名允许的范围有所扩大, str, int, float, bool和None类型的数据都可以做为键名. 不过当键名非str的情况时, 键名会转换为对应的str值. 如下例:
> json.dumps( ... { ... 'str': 'str', ... 123: 123, ... 321.54: 321.54, ... True: True, ... False: False, ... None: None ... } ... ) '{"str": "str", "123": 123, "321.54": 321.54, "true": true, "false": false, "null": null}'
而当出现其他类型的键名时, 默认出抛出异常:
> json.dumps({(1,2): 123}) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/__init__.py", line 231, in dumps return _default_encoder.encode(obj) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/encoder.py", line 199, in encode chunks = self.iterencode(o, _one_shot=True) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/encoder.py", line 257, in iterencode return _iterencode(o, 0) TypeError: keys must be a string
json.dumps的skipkeys参数可以改变这个行为. 当将skipkeys设置为True时, 遇到非法的键名类型, 不会抛出异常, 而是跳过这个键名:
> json.dumps({(1,2): 123}, skipkeys=True) '{}'
3.7 生成JSON文件
当需要将生成的JSON数据保存到文件时, 可以使用json.dump方法. 这个方法比json.dumps多了一个参数fp, 这个参数就是用来保存JSON数据的文件对象. 比如, 下例中的代码
> with open('/tmp/data.json', mode='a') as jf: ... json.dump({'a': 123}, jf) ...
就会将JSON数据写入到/tmp/data.json文件里. 代码执行完后, 文件内容为
{"a": 123} json.dump方法也可以接受其他类文件对象: > sio = io.StringIO() > json.dump({'a': 123}, sio) > sio.getvalue() '{"a": 123}'
json.dump的其他参数和json.dumps的用法相同, 这里不再赘述.
4 JSON解码和编码类实现
json.loads, json.load, json.dumps和json.dump这四个方法是通过json.JSONDecoder和json.JSONEncoder这两个类来完成各自的任务的. 所以也可以直接使用这两个类来完成前文描述的功能:
> json.JSONDecoder().decode('{"a": 123}') {'a': 123} > json.JSONEncoder().encode({'a': 123}) '{"a": 123}'
json.loads, json.load, json.dumps和json.dump这个四个方法的参数主要都是传递给了json.JSONDecoder和json.JSONEncoder的构造方法, 所以使用这些方法可以满足绝大部分需求. 当需要自定义json.JSONDecoder和json.JSONEncoder子类的时候, 只需要将子类传递给cls参数. 同时, 这些方法都有**kw参数. 当自定义实现类的构造函数需要标准参数列表之外的新参数时, 这个参数就会将新参数传递给实现类的构造方法.
5 相关资源
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。