小米5s微信跳一跳小程序python源码

脚本专栏 发布日期:2025/1/20 浏览次数:1

正在浏览:小米5s微信跳一跳小程序python源码

本文实例为大家分享了微信跳一跳小程序python源码,供大家参考,具体内容如下

微信跳一跳小程序小米5s源码python,搭建环境后亲测可用。

# coding: utf-8
import os
import sys
import subprocess
import shutil
import time
import math
from PIL import Image, ImageDraw
import random
import json
import re


# === 思路 ===
# 核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标,
# 根据两个点的距离乘以一个时间系数获得长按的时间
# 识别棋子:靠棋子的颜色来识别位置,通过截图发现最下面一行大概是一条直线,就从上往下一行一行遍历,
# 比较颜色(颜色用了一个区间来比较)找到最下面的那一行的所有点,然后求个中点,
# 求好之后再让 Y 轴坐标减小棋子底盘的一半高度从而得到中心点的坐标
# 识别棋盘:靠底色和方块的色差来做,从分数之下的位置开始,一行一行扫描,由于圆形的块最顶上是一条线,
# 方形的上面大概是一个点,所以就用类似识别棋子的做法多识别了几个点求中点,
# 这时候得到了块中点的 X 轴坐标,这时候假设现在棋子在当前块的中心,
# 根据一个通过截图获取的固定的角度来推出中点的 Y 坐标
# 最后:根据两点的坐标算距离乘以系数来获取长按时间(似乎可以直接用 X 轴距离)


# TODO: 解决定位偏移的问题
# TODO: 看看两个块中心到中轴距离是否相同,如果是的话靠这个来判断一下当前超前还是落后,便于矫正
# TODO: 一些固定值根据截图的具体大小计算
# TODO: 直接用 X 轴距离简化逻辑

def open_accordant_config():
 screen_size = _get_screen_size()
 config_file = "{path}/config/{screen_size}/config.json".format(
 path=sys.path[0],
 screen_size=screen_size
 )
 if os.path.exists(config_file):
 with open(config_file, 'r') as f:
  print("Load config file from {}".format(config_file))
  return json.load(f)
 else:
 with open('{}/config/default.json'.format(sys.path[0]), 'r') as f:
  print("Load default config")
  return json.load(f)


def _get_screen_size():
 size_str = os.popen('adb shell wm size').read()
 m = re.search('(\d+)x(\d+)', size_str)
 if m:
 width = m.group(1)
 height = m.group(2)
 return "{height}x{width}".format(height=height, width=width)


config = open_accordant_config()

# Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需设置
under_game_score_y = 300
press_coefficient = 1.47 # 长按的时间系数,请自己根据实际情况调节
piece_base_height_1_2 = 25 # 二分之一的棋子底座高度,可能要调节
piece_body_width = 80  # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节

# 模拟按压的起始点坐标,需要自动重复游戏请设置成“再来一局”的坐标
if config.get('swipe'):
 swipe = config['swipe']
else:
 swipe = {}
 swipe['x1'], swipe['y1'], swipe['x2'], swipe['y2'] = 320, 410, 320, 410


screenshot_backup_dir = 'screenshot_backups/'
if not os.path.isdir(screenshot_backup_dir):
 os.mkdir(screenshot_backup_dir)


def pull_screenshot():
 process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE)
 screenshot = process.stdout.read()
 if sys.platform == 'win32':
 screenshot = screenshot.replace(b'\r\n', b'\n')
 f = open('autojump.png', 'wb')
 f.write(screenshot)
 f.close()

def backup_screenshot(ts):
 # 为了方便失败的时候 debug
 if not os.path.isdir(screenshot_backup_dir):
 os.mkdir(screenshot_backup_dir)
 shutil.copy('autojump.png', '{}{}.png'.format(screenshot_backup_dir, ts))


def save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y):
 draw = ImageDraw.Draw(im)
 # 对debug图片加上详细的注释
 draw.line((piece_x, piece_y) + (board_x, board_y), fill=2, width=3)
 draw.line((piece_x, 0, piece_x, im.size[1]), fill=(255, 0, 0))
 draw.line((0, piece_y, im.size[0], piece_y), fill=(255, 0, 0))
 draw.line((board_x, 0, board_x, im.size[1]), fill=(0, 0, 255))
 draw.line((0, board_y, im.size[0], board_y), fill=(0, 0, 255))
 draw.ellipse((piece_x - 10, piece_y - 10, piece_x + 10, piece_y + 10), fill=(255, 0, 0))
 draw.ellipse((board_x - 10, board_y - 10, board_x + 10, board_y + 10), fill=(0, 0, 255))
 del draw
 im.save('{}{}_d.png'.format(screenshot_backup_dir, ts))


def set_button_position(im):
 # 将swipe设置为 `再来一局` 按钮的位置
 global swipe_x1, swipe_y1, swipe_x2, swipe_y2
 w, h = im.size
 left = w / 2
 top = 1003 * (h / 1280.0) + 10
 swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top
def jump(distance):
 if distance < 400:
 distance = 0.9 * distance + 50
 else:
 distance = 0.85 * distance + 80
 press_time = distance * press_coefficient
 press_time = max(press_time, 200) # 设置 200 ms 是最小的按压时间
 press_time = int(press_time)
 cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
 x1=swipe['x1'],
 y1=swipe['y1'],
 x2=swipe['x2'],
 y2=swipe['y2'],
 duration=press_time

 )






 print(cmd)
 os.system(cmd)

# 转换色彩模式hsv2rgb
def hsv2rgb(h, s, v):
 h = float(h)
 s = float(s)
 v = float(v)
 h60 = h / 60.0
 h60f = math.floor(h60)
 hi = int(h60f) % 6
 f = h60 - h60f
 p = v * (1 - s)
 q = v * (1 - f * s)
 t = v * (1 - (1 - f) * s)
 r, g, b = 0, 0, 0
 if hi == 0: r, g, b = v, t, p
 elif hi == 1: r, g, b = q, v, p
 elif hi == 2: r, g, b = p, v, t
 elif hi == 3: r, g, b = p, q, v
 elif hi == 4: r, g, b = t, p, v
 elif hi == 5: r, g, b = v, p, q
 r, g, b = int(r * 255), int(g * 255), int(b * 255)
 return r, g, b

# 转换色彩模式rgb2hsv
def rgb2hsv(r, g, b):
 r, g, b = r/255.0, g/255.0, b/255.0
 mx = max(r, g, b)
 mn = min(r, g, b)
 df = mx-mn
 if mx == mn:
 h = 0
 elif mx == r:
 h = (60 * ((g-b)/df) + 360) % 360
 elif mx == g:
 h = (60 * ((b-r)/df) + 120) % 360
 elif mx == b:
 h = (60 * ((r-g)/df) + 240) % 360
 if mx == 0:
 s = 0
 else:
 s = df/mx
 v = mx
 return h, s, v


def find_piece_and_board(im):
 w, h = im.size

 piece_x_sum = 0
 piece_x_c = 0
 piece_y_max = 0
 board_x = 0
 board_y = 0

 left_value = 0
 left_count = 0
 right_value = 0
 right_count = 0
 from_left_find_board_y = 0
 from_right_find_board_y = 0


 scan_x_border = int(w / 8) # 扫描棋子时的左右边界
 scan_start_y = 0 # 扫描的起始y坐标
 im_pixel=im.load()
 # 以50px步长,尝试探测scan_start_y
 for i in range(int(h / 3), int( h*2 /3 ), 50):
 last_pixel = im_pixel[0,i]
 for j in range(1, w):
  pixel=im_pixel[j,i]
  # 不是纯色的线,则记录scan_start_y的值,准备跳出循环
  if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]:
  scan_start_y = i - 50
  break
 if scan_start_y:
  break
 print('scan_start_y: ', scan_start_y)

 # 从scan_start_y开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过2/3
 for i in range(scan_start_y, int(h * 2 / 3)):
 for j in range(scan_x_border, w - scan_x_border): # 横坐标方面也减少了一部分扫描开销
  pixel = im_pixel[j,i]
  # 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜色这样应该 OK,暂时不提出来
  if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110):
  piece_x_sum += j
  piece_x_c += 1
  piece_y_max = max(i, piece_y_max)

 if not all((piece_x_sum, piece_x_c)):
 return 0, 0, 0, 0
 piece_x = piece_x_sum / piece_x_c
 piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盘高度的一半

 for i in range(int(h / 3), int(h * 2 / 3)):

 last_pixel = im_pixel[0, i]
 # 计算阴影的RGB值,通过photoshop观察,阴影部分其实就是背景色的明度V 乘以0.7的样子
 h, s, v = rgb2hsv(last_pixel[0], last_pixel[1], last_pixel[2])
 r, g, b = hsv2rgb(h, s, v * 0.7)

 if from_left_find_board_y and from_right_find_board_y:
  break

 if not board_x:
  board_x_sum = 0
  board_x_c = 0

  for j in range(w):
  pixel = im_pixel[j,i]
  # 修掉脑袋比下一个小格子还高的情况的 bug
  if abs(j - piece_x) < piece_body_width:
   continue

  # 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来
  if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10:
   board_x_sum += j
   board_x_c += 1
  if board_x_sum:
  board_x = board_x_sum / board_x_c
 else:
  # 继续往下查找,从左到右扫描,找到第一个与背景颜色不同的像素点,记录位置
  # 当有连续3个相同的记录时,表示发现了一条直线
  # 这条直线即为目标board的左边缘
  # 然后当前的 y 值减 3 获得左边缘的第一个像素
  # 就是顶部的左边顶点
  for j in range(w):
  pixel = im_pixel[j, i]
  # 修掉脑袋比下一个小格子还高的情况的 bug
  if abs(j - piece_x) < piece_body_width:
   continue
  if (abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2])
   > 10) and (abs(pixel[0] - r) + abs(pixel[1] - g) + abs(pixel[2] - b) > 10):
   if left_value == j:
   left_count = left_count+1
   else:
   left_value = j
   left_count = 1

   if left_count > 3:
   from_left_find_board_y = i - 3
   break
  # 逻辑跟上面类似,但是方向从右向左
  # 当有遮挡时,只会有一边有遮挡
  # 算出来两个必然有一个是对的
  for j in range(w)[::-1]:
  pixel = im_pixel[j, i]
  # 修掉脑袋比下一个小格子还高的情况的 bug
  if abs(j - piece_x) < piece_body_width:
   continue
  if (abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2])
   > 10) and (abs(pixel[0] - r) + abs(pixel[1] - g) + abs(pixel[2] - b) > 10):
   if right_value == j:
   right_count = left_count + 1
   else:
   right_value = j
   right_count = 1

   if right_count > 3:
   from_right_find_board_y = i - 3
   break

 # 如果顶部像素比较多,说明图案近圆形,相应的求出来的值需要增大,这里暂定增大顶部宽的三分之一
 if board_x_c > 5:
 from_left_find_board_y = from_left_find_board_y + board_x_c / 3
 from_right_find_board_y = from_right_find_board_y + board_x_c / 3

 # 按实际的角度来算,找到接近下一个 board 中心的坐标 这里的角度应该是30°,值应该是tan 30°,math.sqrt(3) / 3
 board_y = piece_y - abs(board_x - piece_x) * math.sqrt(3) / 3

 # 从左从右取出两个数据进行对比,选出来更接近原来老算法的那个值
 if abs(board_y - from_left_find_board_y) > abs(from_right_find_board_y):
 new_board_y = from_right_find_board_y
 else:
 new_board_y = from_left_find_board_y

 if not all((board_x, board_y)):
 return 0, 0, 0, 0

 return piece_x, piece_y, board_x, new_board_y


def dump_device_info():
 size_str = os.popen('adb shell wm size').read()
 device_str = os.popen('adb shell getprop ro.product.model').read()
 density_str = os.popen('adb shell wm density').read()
 print("如果你的脚本无法工作,上报issue时请copy如下信息:\n********** \nScreen: {size}\nDensity: {dpi}\nDeviceType: {type}\nOS: {os}\nPython: {python}\n**********".format(
  size=size_str.strip(),
  type=device_str.strip(),
  dpi=density_str.strip(),
  os=sys.platform,
  python=sys.version
 ))


def check_adb():
 flag = os.system('adb devices')
 if flag == 1:
 print('请安装ADB并配置环境变量')
 sys.exit()


def main():

 h, s, v = rgb2hsv(201, 204, 214)
 print(h, s, v)
 r, g, b = hsv2rgb(h, s, v*0.7)
 print(r, g, b)

 dump_device_info()
 check_adb()
 while True:
 pull_screenshot()
 im = Image.open('./autojump.png')
 # 获取棋子和 board 的位置
 piece_x, piece_y, board_x, board_y = find_piece_and_board(im)
 ts = int(time.time())
 print(ts, piece_x, piece_y, board_x, board_y)
 set_button_position(im)
 jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2))
 save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y)
 backup_screenshot(ts)
 time.sleep(3) # 为了保证截图的时候应落稳了,多延迟一会儿


if __name__ == '__main__':
 main()


源码下载:跳一跳小程序python源码

更多内容大家可以参考专题《微信跳一跳》进行学习。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。