使用python实现ANN

脚本专栏 发布日期:2025/1/20 浏览次数:1

正在浏览:使用python实现ANN

本文实例为大家分享了python实现ANN的具体代码,供大家参考,具体内容如下

1.简要介绍神经网络

神经网络是具有适应性的简单单元组成的广泛并行互联的网络。它的组织能够模拟生物神经系统对真实世界物体做做出的反应。神经网络的最基本的成分是神经元模型,也就是最简单的神经元模型。

“M-P模型”

使用python实现ANN

如上图所示,神经元接收到来自n个其他神经元传递过来的输入信号,这些信号通过带权重的链接进行传递。神经元接收到的总输入值将与神经元的阈值进行比较,然后通过“激活函数”处理以产生神经元的输出

激活函数:

理想的激活函数应该是阶跃函数,也就是它能够将输入值映射成为输出值0或1。其中“0”代表神经元抑制,“1”代表神经元兴奋。但是由于阶跃函数不连续且不可导,因此实际上常常使用sigmoid函数当做神经元的激活函数。它能够将可能在较大范围内变化的输出值挤压到(0,1)之间这个范围内。因此有时也成为挤压函数。常用的sigmoid函数是回归函数

f(x) = 1/(1+e^(-x))

如下图所示:

使用python实现ANN

感知机:

感知机是最简单的神经网络,它由两层神经元组成。输入层接受外界信号后传递给输出层。输出层是M-P神经元。感知机也成为阈值逻辑单元。感知机可以通过采用监督学习来逐步增强模式划分的能力,达到学习的目的。

使用python实现ANN

感知机能够实现简单的逻辑运算。

一般的,对于给定训练数据集,权重Wi以及阈值θ可以通过学习得到。其中阈值(bias)可以通过学习得到。在输出神经元中,阈值可以看做是一个固定输入为-1,0的哑结点,所对应的连接权重为Wn+1,从而使得权重和阈值的学习统一为权重的学习。

感知机的学习规则非常简单,对于训练样本(X,y),若当前感知机输出为y',则感知机做如下调整

使用python实现ANN

其中,η属于(0,1),称为“学习率”

若感知机对训练样例预测正确,则感知机不发生变化,否则将根据错误的程度进行权重的调整。

需要注意的是,感知机只有输出神经元进行激活函数处理,因此它的学习能力非常有限,也就是因为它只有一层功能神经元。

可以证明,若两类模式实现性可分的,即存在一个超平面可以将他们分开,则利用感知机一定会收敛,可以求得一个权向量。否则,感知机的学习过程将会发生震荡,导致参数难以稳定下来,不等求得合适的解。例如,单层感知机不能解决抑或问题。

如果想要解决非线性可分问题,考虑使用多层功能神经元。

前馈神经网络

每层神经元与下一层神经元全互联,神经元之间不存在同层链接,也不存在跨曾链接。其中输入层神经元有由外界进行输入,隐藏层与输出层神经元对信号进行加工,最终结果由输出层神经元进行输出。输入层神经元仅仅起到接受输入的功能,并不进行函数处理。

所谓的神经网络的学习过程,也就是根据训练数据来调整神经元之间的“连接权”以及每个功能神经元的阈值,换句话说,神经网络能够“学习”到的东西,全部都蕴含在“连接权”与“阈值”之中

BP算法(误差逆传播算法)

BP算法,也成为反向传播算法

"color: #800000">如何设置隐层神经元的个数"color: #800000">早停和正则化:
早停:将数据集分为训练集和验证集,训练集用来计算梯度,更新连接权值和阈值,验证集用来估计误差,若训练集误差降低但验证集误差升高,则立即停止训练。返回具有最小验证集误差的连接权和阈值。
正则化:在误差目标函数中增加一个用来描述网络复杂度的部分。例如连接权与阈值的平方和,仍令Ek为第k个训练样例上误差,Wi表示链接权和阈值,则误差目标函数定义为:

使用python实现ANN

其中λ属于(0,1),用对经验误差与网络复杂度这两项进行这种,使用”交叉验证“

2.使用python和机器学习库sklearn库编程实现:

# coding=utf-8 
# 使用Python构建ANN 
 
import numpy as np 
 
# 双曲函数 
def tanh(x): 
 return np.tanh(x) 
 
# 双曲函数的微分 
def tanh_deriv(x): 
 return 1.0 - np.tanh(x) * np.tanh(x) 
 
# 逻辑函数 
def logistics(x): 
 return 1 / (1+np.exp(-x)) 
 
# 逻辑函数的微分 
def logistics_derivative(x): 
 return logistics(x)*(1-logistics(x)) 
 
# 使用类 面向对象的技巧 建立ANN 
class NeuralNetwork: 
 # 构造函数 layers指的是每层内有多少个神经元 layers内的数量表示有几层 
 # acvitation 为使用的激活函数名称 有默认值 tanh 表示使用tanh(x) 
 def __init__(self,layers,activation='tanh'): 
  if activation == 'logistic': 
   self.activation = logistics 
   self.activation_deriv = logistics_derivative 
  elif activation == 'tanh': 
   self.activation = tanh 
   self.activation = tanh_deriv 
 
  self.weight =[] 
  # len(layers)-1的目的是 输出层不需要赋予相应的权值 
  for i in range(1,len(layers) - 1): 
   # 第一句是对当前层与前一层之间的连线进行权重赋值,范围在 -0.25 ~ 0.25之间 
   self.weight.append((2*np.random.random((layers[i-1]+1,layers[i]+1))-1)*0.25) 
   # 第二句是对当前层与下一层之间的连线进行权重赋值,范围在 -0.25 ~ 0.25之间 
   self.weight.append((2*np.random.random((layers[i]+1,layers[i+1]))-1)*0.25) 
 
 def fit(self,X,y,learning_rate = 0.2,epochs = 10000): 
  # self是指引当前类的指针 X表示训练集 通常模拟成一个二维矩阵,每一行代表一个样本的不同特征 
  # 每一列代表不同的样本 y指的是classLabel 表示的是输出的分类标记 
  # learning_rate是学习率,epochs表示循环的次数 
  X = np.atleast_2d(X) 
  # 将X转换为numpy2维数组 至少是2维的 
  temp = np.ones([X.shape[0],X.shape[1]+1]) 
  # X.shape[0]返回的是X的行数 X.shape[1]返回的是X的列数 
  temp[:,0:-1] = X # :指的是所有的行 0:-1指的是从第一列到除了最后一列 
  X = temp # 偏向的赋值 
  y = np.array(y)  # 将y转换为numpy array的形式 
 
  # 使用抽样的算法 每次随机选一个 x中的样本 
  for k in range(epochs): 
   # randint(X.shape[0])指的是从0~X.shape[0] 之间随机生成一个int型的数字 
   i = np.random.randint(X.shape[0]) 
   a = [X[i]] # a是从x中任意抽取的一行数据 
 
   #正向更新 
   for l in range(len(self.weight)): # 循环遍历每一层 
    # dot是求内积的运算 将内积运算的结果放在非线性转换方程之中 
    a.append(self.activation(np.dot(a[l], self.weight[l]))) 
 
   error = y[i] - a[-1] # 求误差 a[-1]指的是最后一层的classLabel 
   deltas = [error * self.activation_deriv(a[-1])] 
 
   # 开始反向传播 从最后一层开始,到第0层,每次回退1层 
   for l in range(len(a) - 2,0,-1): 
    deltas.append(deltas[-1].dot(self.weight[l].T)*self.activation_deriv(a[l])) 
   deltas.reverse() 
 
   for i in range(len(self.weight)): 
    layer = np.atleast_2d(a[i]) 
    delta = np.atleast_2d(deltas[i]) # delta存的是误差 
    self.weight[i] += learning_rate * layer.T.dot(delta) # 误差与单元格的值的内积 
 
 # 预测过程 
 def predict(self,x): 
  x=np.array(x) 
  temp = np.ones(x.shape[0]+1) 
  temp[0:-1] = x 
  a = temp 
  for l in range(0,len(self.weight)): 
   a = self.activation(np.dot(a,self.weight[l])) 
  return a 

使用简单的程序进行测试

# coding=utf-8 
 
from ANN import NeuralNetwork 
import numpy as np 
 
nn = NeuralNetwork([2, 2, 1], 'tanh') 
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) 
y = np.array([0, 1, 1, 0]) 
nn.fit(X, y) 
for i in [[0, 0], [0, 1], [1, 0], [1, 1]]: 
 print(i, nn.predict(i)) 

执行后,输出的结果为:

使用python实现ANN

End.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。