python持久性管理pickle模块详细介绍

脚本专栏 发布日期:2025/1/15 浏览次数:1

正在浏览:python持久性管理pickle模块详细介绍

持久性就是指保持对象,甚至在多次执行同一程序之间也保持对象。通过本文,您会对 Python对象的各种持久性机制(从关系数据库到 Python 的 pickle以及其它机制)有一个总体认识。另外,还会让您更深一步地了解Python 的对象序列化能力。
什么是持久性?

持 久性的基本思想很简单。假定有一个 Python 程序,它可能是一个管理日常待办事项的程序,您希望在多次执行这个程序之间可以保存应用程序对象(待办事项)。换句话说,您希望将对象存储在磁盘上,便于 以后检索。这就是持久性。要达到这个目的,有几种方法,每一种方法都有其优缺点。

例如,可以将对象数据存储在某种格式的文本文件中,譬如 CSV 文件。或者可以用关系数据库,譬如 Gadfly、MySQL、PostgreSQL 或者 DB2。这些文件格式和数据库都非常优秀,对于所有这些存储机制,Python 都有健壮的接口。

这 些存储机制都有一个共同点:存储的数据是独立于对这些数据进行操作的对象和程序。这样做的好处是,数据可以作为共享的资源,供其它应用程序使用。缺点 是,用这种方式,可以允许其它程序访问对象的数据,这违背了面向对象的封装性原则 — 即对象的数据只能通过这个对象自身的公共(public)接口来访问。

另外,对于某些应用程序,关系数据库 方法可能不是很理想。尤其是,关系数据库不理解对象。相反,关系数据库会强行 使用自己的类型系统和关系数据模型(表),每张表包含一组元组(行),每行包含具有固定数目的静态类型字段(列)。如果应用程序的对象模型不能够方便地转 换到关系模型,那么在将对象映射到元组以及将元组映射回对象方面,会碰到一定难度。这种困难常被称为阻碍性不匹配(impedence- mismatch)问题。

一些经过 pickle 的 Python

pickle 模块及其同类模块 cPickle 向 Python 提供了 pickle 支持。后者是用 C 编码的,它具有更好的性能,对于大多数应用程序,推荐使用该模块。我们将继续讨论 pickle ,但本文的示例实际是利用了 cPickle 。由于其中大多数示例要用 Python shell 来显示,所以先展示一下如何导入 cPickle ,并可以作为 pickle 来引用它:
复制代码 代码如下:
> import cPickle as pickle

现在已经导入了该模块,接下来让我们看一下 pickle 接口。 pickle 模块提供了以下函数对: dumps(object) 返回一个字符串,它包含一个 pickle 格式的对象; loads(string) 返回包含在 pickle 字符串中的对象; dump(object, file) 将对象写到文件,这个文件可以是实际的物理文件,但也可以是任何类似于文件的对象,这个对象具有 write() 方法,可以接受单个的字符串参数; load(file) 返回包含在 pickle 文件中的对象。

缺省情况下, dumps() 和 dump() 使用可打印的 ASCII 表示来创建 pickle。两者都有一个 final 参数(可选),如果为 True ,则该参数指定用更快以及更小的二进制表示来创建 pickle。 loads() 和 load() 函数自动检测 pickle 是二进制格式还是文本格式。

清单 1 显示了一个交互式会话,这里使用了刚才所描述的 dumps() 和 loads() 函数:


清单 1. dumps() 和 loads() 的演示

复制代码 代码如下:
Welcome To PyCrust 0.7.2 - The Flakiest Python Shell
Sponsored by Orbtech - Your source for Python programming expertise.
Python 2.2.1 (#1, Aug 27 2002, 10:22:32)
[GCC 3.2 (Mandrake Linux 9.0 3.2-1mdk)] on linux-i386
Type "copyright", "credits" or "license" for more information.
> import cPickle as pickle
> t1 = ('this is a string', 42, [1, 2, 3], None)
> t1
('this is a string', 42, [1, 2, 3], None)
> p1 = pickle.dumps(t1)
> p1
"(S'this is a string'\nI42\n(lp1\nI1\naI2\naI3\naNtp2\n."
> print p1
(S'this is a string'
I42
(lp1
I1
aI2
aI3
aNtp2
.
> t2 = pickle.loads(p1)
> t2
('this is a string', 42, [1, 2, 3], None)
> p2 = pickle.dumps(t1, True)
> p2
'(U\x10this is a stringK*]q\x01(K\x01K\x02K\x03eNtq\x02.'
> t3 = pickle.loads(p2)
> t3
('this is a string', 42, [1, 2, 3], None)

注:该文本 pickle 格式很简单,这里就不解释了。事实上,在 pickle 模块中记录了所有使用的约定。我们还应该指出,在我们的示例中使用的都是简单对象,因此使用二进制 pickle 格式不会在节省空间上显示出太大的效率。然而,在实际使用复杂对象的系统中,您会看到,使用二进制格式可以在大小和速度方面带来显著的改进。

接下来,我们看一些示例,这些示例用到了 dump() 和 load() ,它们使用文件和类似文件的对象。这些函数的操作非常类似于我们刚才所看到的 dumps() 和 loads() ,区别在于它们还有另一种能力 — dump() 函数能一个接着一个地将几个对象转储到同一个文件。随后调用 load() 来以同样的顺序检索这些对象。清单 2 显示了这种能力的实际应用:

清单 2. dump() 和 load() 示例

复制代码 代码如下:
> a1 = 'apple'
> b1 = {1: 'One', 2: 'Two', 3: 'Three'}
> c1 = ['fee', 'fie', 'foe', 'fum']
> f1 = file('temp.pkl', 'wb')
> pickle.dump(a1, f1, True)
> pickle.dump(b1, f1, True)
> pickle.dump(c1, f1, True)
> f1.close()
> f2 = file('temp.pkl', 'rb')
> a2 = pickle.load(f2)
> a2
'apple'
> b2 = pickle.load(f2)
> b2
{1: 'One', 2: 'Two', 3: 'Three'}
> c2 = pickle.load(f2)
> c2
['fee', 'fie', 'foe', 'fum']
> f2.close()

Pickle 的威力

到目前为止,我们讲述了关于 pickle 方面的基本知识。在这一节,将讨论一些高级问题,当您开始 pickle 复杂对象时,会遇到这些问题,其中包括定制类的实例。幸运的是,Python 可以很容易地处理这种情形。

可移植性

从 空间和时间上说,Pickle 是可移植的。换句话说,pickle 文件格式独立于机器的体系结构,这意味着,例如,可以在 Linux 下创建一个 pickle,然后将它发送到在 Windows 或 Mac OS 下运行的 Python 程序。并且,当升级到更新版本的 Python 时,不必担心可能要废弃已有的 pickle。Python 开发人员已经保证 pickle 格式将可以向后兼容 Python 各个版本。事实上,在 pickle 模块中提供了有关目前以及所支持的格式方面的详细信息:


清单 3. 检索所支持的格式
复制代码 代码如下:
> pickle.format_version
'1.3'
> pickle.compatible_formats
['1.0', '1.1', '1.2']

多个引用,同一对象

在 Python 中,变量是对象的引用。同时,也可以用多个变量引用同一个对象。经证明,Python 在用经过 pickle 的对象维护这种行为方面丝毫没有困难,如清单 4 所示:

清单 4. 对象引用的维护
复制代码 代码如下:
> a = [1, 2, 3]
> b = a
> a
[1, 2, 3]
> b
[1, 2, 3]
> a.append(4)
> a
[1, 2, 3, 4]
> b
[1, 2, 3, 4]
> c = pickle.dumps((a, b))
> d, e = pickle.loads(c)
> d
[1, 2, 3, 4]
> e
[1, 2, 3, 4]
> d.append(5)
> d
[1, 2, 3, 4, 5]
> e
[1, 2, 3, 4, 5]

循环引用和递归引用

可以将刚才演示过的对象引用支持扩展到 循环引用(两个对象各自包含对对方的引用)和 递归引用(一个对象包含对其自身的引用)。下面两个清单着重显示这种能力。我们先看一下递归引用:

>清单 5. 递归引用
复制代码 代码如下:
> l = [1, 2, 3]
> l.append(l)
> l
[1, 2, 3, [...]]
> l[3]
[1, 2, 3, [...]]
> l[3][3]
[1, 2, 3, [...]]
> p = pickle.dumps(l)
> l2 = pickle.loads(p)
> l2
[1, 2, 3, [...]]
> l2[3]
[1, 2, 3, [...]]
> l2[3][3]
[1, 2, 3, [...]]

现在,看一个循环引用的示例:

清单 6. 循环引用

复制代码 代码如下:
> a = [1, 2]
> b = [3, 4]
> a.append(b)
> a
[1, 2, [3, 4]]
> b.append(a)
> a
[1, 2, [3, 4, [...]]]
> b
[3, 4, [1, 2, [...]]]
> a[2]
[3, 4, [1, 2, [...]]]
> b[2]
[1, 2, [3, 4, [...]]]
> a[2] is b
> b[2] is a
> f = file('temp.pkl', 'w')
> pickle.dump((a, b), f)
> f.close()
> f = file('temp.pkl', 'r')
> c, d = pickle.load(f)
> f.close()
> c
[1, 2, [3, 4, [...]]]
> d
[3, 4, [1, 2, [...]]]
> c[2]
[3, 4, [1, 2, [...]]]
> d[2]
[1, 2, [3, 4, [...]]]
> c[2] is d
> d[2] is c

注意,如果分别 pickle 每个对象,而不是在一个元组中一起 pickle 所有对象,会得到略微不同(但很重要)的结果,如清单 7 所示:


清单 7. 分别 pickle vs. 在一个元组中一起 pickle

复制代码 代码如下:
> f = file('temp.pkl', 'w')
> pickle.dump(a, f)
> pickle.dump(b, f)
> f.close()
> f = file('temp.pkl', 'r')
> c = pickle.load(f)
> d = pickle.load(f)
> f.close()
> c
[1, 2, [3, 4, [...]]]
> d
[3, 4, [1, 2, [...]]]
> c[2]
[3, 4, [1, 2, [...]]]
> d[2]
[1, 2, [3, 4, [...]]]
> c[2] is d
> d[2] is c

相等,但并不总是相同

正如在上一个示例所暗示的,只有在这些对象引用内存中同一个对象时,它们才是相同的。在 pickle 情形中,每个对象被恢复到一个与原来对象相等的对象,但不是同一个对象。换句话说,每个 pickle 都是原来对象的一个副本:


清单 8. 作为原来对象副本的被恢复的对象

复制代码 代码如下:
> j = [1, 2, 3]
> k = j
> k is j
> x = pickle.dumps(k)
> y = pickle.loads(x)
> y
[1, 2, 3]
> y == k
> y is k
> y is j
> k is j

同时,我们看到 Python 能够维护对象之间的引用,这些对象是作为一个单元进行 pickle 的。然而,我们还看到分别调用 dump() 会使 Python 无法维护对在该单元外部进行 pickle 的对象的引用。相反,Python 复制了被引用对象,并将副本和被 pickle 的对象存储在一起。对于 pickle 和恢复单个对象层次结构的应用程序,这是没有问题的。但要意识到还有其它情形。

值得指出的是,有一个选项确实允许分别 pickle 对象,并维护相互之间的引用,只要这些对象都是 pickle 到同一文件即可。 pickle 和 cPickle 模块提供了一个 Pickler (与此相对应是 Unpickler ),它能够跟踪已经被 pickle 的对象。通过使用这个 Pickler ,将会通过引用而不是通过值来 pickle 共享和循环引用:


清单 9. 维护分别 pickle 的对象间的引用

复制代码 代码如下:
> f = file('temp.pkl', 'w')
> pickler = pickle.Pickler(f)
> pickler.dump(a)
<cPickle.Pickler object at 0x89b0bb8>
> pickler.dump(b)
<cPickle.Pickler object at 0x89b0bb8>
> f.close()
> f = file('temp.pkl', 'r')
> unpickler = pickle.Unpickler(f)
> c = unpickler.load()
> d = unpickler.load()
> c[2]
[3, 4, [1, 2, [...]]]
> d[2]
[1, 2, [3, 4, [...]]]
> c[2] is d
> d[2] is c

不可 pickle 的对象

一 些对象类型是不可 pickle 的。例如,Python 不能 pickle 文件对象(或者任何带有对文件对象引用的对象),因为 Python 在 unpickle 时不能保证它可以重建该文件的状态(另一个示例比较难懂,在这类文章中不值得提出来)。试图 pickle 文件对象会导致以下错误:


清单 10. 试图 pickle 文件对象的结果

复制代码 代码如下:
> f = file('temp.pkl', 'w')
> p = pickle.dumps(f)
Traceback (most recent call last):
  File "<input>", line 1, in "/usr/lib/python2.2/copy_reg.py", line 57, in _reduce
    raise TypeError, "can't pickle %s objects" % base.__name__
TypeError: can't pickle file objects


类实例

与 pickle 简单对象类型相比,pickle 类实例要多加留意。这主要由于 Python 会 pickle 实例数据(通常是 _dict_ 属性)和类的名称,而不会 pickle 类的代码。当 Python unpickle 类的实例时,它会试图使用在 pickle 该实例时的确切的类名称和模块名称(包括任何包的路径前缀)导入包含该类定义的模块。另外要注意,类定义必须出现在模块的最顶层,这意味着它们不能是嵌套 的类(在其它类或函数中定义的类)。

当 unpickle 类的实例时,通常不会再调用它们的 _init_() 方法。相反,Python 创建一个通用类实例,并应用已进行过 pickle 的实例属性,同时设置该实例的 _class_ 属性,使其指向原来的类。

对 Python 2.2 中引入的新型类进行 unpickle 的机制与原来的略有不同。虽然处理的结果实际上与对旧型类处理的结果相同,但 Python 使用 copy_reg 模块的 _reconstructor() 函数来恢复新型类的实例。

如果希望对新型或旧型类的实例修改缺省的 pickle 行为,则可以定义特殊的类的方法 _getstate_() 和 _setstate_() ,在保存和恢复类实例的状态信息期间,Python 会调用这些方法。在以下几节中,我们会看到一些示例利用了这些特殊的方法。

现在,我们看一个简单的类实例。首先,创建一个 persist.py 的 Python 模块,它包含以下新型类的定义:

清单 11. 新型类的定义
复制代码 代码如下:
class Foo(object):
    def __init__(self, value):
        self.value = value

现在可以 pickle Foo 实例,并看一下它的表示:

清单 12. pickle Foo 实例

复制代码 代码如下:
> import cPickle as pickle
> from Orbtech.examples.persist import Foo
> foo = Foo('What is a Foo"codetitle">复制代码 代码如下:
> import cPickle as pickle
> f = file('temp.pkl', 'r')
> foo = pickle.load(f)
Traceback (most recent call last):
  File "<input>", line 1, in "codetitle">复制代码 代码如下:
> import cPickle as pickle
> f = file('temp.pkl', 'r')
> foo = pickle.load(f)
Traceback (most recent call last):
  File "<input>", line 1, in "codetitle">复制代码 代码如下:
class Foo(object):
    def __init__(self, value, filename):
        self.value = value
        self.logfile = file(filename, 'w')
    def __getstate__(self):
        """Return state values to be pickled."""
        f = self.logfile
        return (self.value, f.name, f.tell())
    def __setstate__(self, state):
        """Restore state from the unpickled state values."""
        self.value, name, position = state
        f = file(name, 'w')
        f.seek(position)
        self.logfile = f

模式改进

随 着时间的推移,您会发现自己必须要更改类的定义。如果已经对某个类实例进行了 pickle,而现在又需要更改这个类,则您可能要检索和更新那些实例,以便它们能在新的类定义下继续正常工作。而我们已经看到在对类或模块进行某些更改 时,会出现一些错误。幸运的是,pickle 和 unpickle 过程提供了一些 hook,我们可以用它们来支持这种模式改进的需要。

在 这一节,我们将探讨一些方法来预测常见问题以及如何解决这些问题。由于不能 pickle 类实例代码,因此可以添加、更改和除去方法,而不会影响现有的经过 pickle 的实例。出于同样的原因,可以不必担心类的属性。您必须确保包含类定义的代码模块在 unpickle 环境中可用。同时还必须为这些可能导致 unpickle 问题的更改做好规划,这些更改包括:更改类名、添加或除去实例的属性以及改变类定义模块的名称或位置。

类名的更改

要 更改类名,而不破坏先前经过 pickle 的实例,请遵循以下步骤。首先,确保原来的类的定义没有被更改,以便在 unpickle 现有实例时可以找到它。不要更改原来的名称,而是在与原来类定义所在的同一个模块中,创建该类定义的一个副本,同时给它一个新的类名。然后使用实际的新类 名来替代 NewClassName ,将以下方法添加到原来类的定义中:

清单 16. 更改类名:添加到原来类定义的方法
复制代码 代码如下:
def __setstate__(self, state):
    self.__dict__.update(state)
    self.__class__ = NewClassName

当 unpickle 现有实例时,Python 将查找原来类的定义,并调用实例的 _setstate_() 方法,同时将给新的类定义重新分配该实例的 _class_ 属性。一旦确定所有现有的实例都已经 unpickle、更新和重新 pickle 后,可以从源代码模块中除去旧的类定义。

属性的添加和删除

这些特殊的状态方法 _getstate_() 和 _setstate_() 再一次使我们能控制每个实例的状态,并使我们有机会处理实例属性中的更改。让我们看一个简单的类的定义,我们将向其添加和除去一些属性。这是是最初的定义:


清单 17. 最初的类定义
复制代码 代码如下:
class Person(object):
    def __init__(self, firstname, lastname):
        self.firstname = firstname
        self.lastname = lastname

假定已经创建并 pickle 了 Person 的实例,现在我们决定真的只想存储一个名称属性,而不是分别存储姓和名。这里有一种方式可以更改类的定义,它将先前经过 pickle 的实例迁移到新的定义:

复制代码 代码如下:
class Person(object):
    def __init__(self, fullname):
        self.fullname = fullname
    def __setstate__(self, state):
        if 'fullname' not in state:
            first = ''
            last = ''
            if 'firstname' in state:
                first = state['firstname']
                del state['firstname']
            if 'lastname' in state:
                last = state['lastname']
                del state['lastname']
            self.fullname = " ".join([first, last]).strip()
        self.__dict__.update(state)

在这个示例,我们添加了一个新的属性 fullname ,并除去了两个现有的属性 firstname 和 lastname 。当对先前进行过 pickle 的实例执行 unpickle 时,其先前进行过 pickle 的状态会作为字典传递给 _setstate_() ,它将包括 firstname 和 lastname 属性的值。接下来,将这两个值组合起来,并将它们分配给新属性 fullname 。在这个过程中,我们删除了状态字典中旧的属性。更新和重新 pickle 先前进行过 pickle 的所有实例之后,现在可以从类定义中除去 _setstate_() 方法。

模块的修改

在概念上,模块的名称或位置的改变类似于类名称的改变,但处理方式却完全不同。那是因为模块的信息存储在 pickle 中,而不是通过标准的 pickle 接口就可以修改的属性。事实上,改变模块信息的唯一办法是对实际的 pickle 文件本身执行查找和替换操作。至于如何确切地去做,这取决于具体的操作系统和可使用的工具。很显然,在这种情况下,您会想备份您的文件,以免发生错误。但 这种改动应该非常简单,并且对二进制 pickle 格式进行更改与对文本 pickle 格式进行更改应该一样有效。

结束语

对象持久性依赖于底层编程语言的对象序列化能力。对于 Python 对象即意味着 pickle。Python 的 pickle 为 Python 对象有效的持久性管理提供了健壮的和可靠的基础。在下面的 参考资料中,您将会找到有关建立在 Python pickle 能力之上的系统的信息。