数据库 发布日期:2025/1/8 浏览次数:1
本文实例讲述了MongoDB Shell 命令。分享给大家供大家参考,具体如下:
原始文件请到我的github上去下载:https://github.com/yangqingxian/mongodb
这里先讲几件事:
1、这是第三次修改这篇文章了,也是第一次正真意义上的使用 github 来控制版本,想想还是有点小激动的:)
2、其中的内容结构与 mongodb基础命令是一致的,只不过添加了很多内容进去,适用于想进一步学习mongodb数据库的人
3、我其实也是菜鸟,所以我会用很白目的语言来解释其中的内容,如果你也跟我一样,那就两只鸟一起飞吧
4、接下来的内容均是我对《MongoDB大数据权威指南(第2版)》的摘记
5、其中的命令例子并没有事先创建好数据库、集合,都是要用到的时候临时写的,注意理解
mongodb数据库结构与传统关系型数据库的比较,便于理解接下来的内容
数据库->集合->文档
数据库->表 ->列
--------------------数据库内容------------------
查看所有数据库
show dbs
删除数据库
db.dropDatebase()
--------------------集合内容--------------------
创建集合
db.createCollection()
查看所有集合\表
show collections show tables
选定某一集合
use db_name
查看集合的信息
db.stats()
删除一个集合,但是需要先指定一个数据库,即先执行 use db_name
db.dropDatabase()
修改集合的名称
db.collection_name.renameCollection('new_name')
----------------------文档内容---------------------
插入数据
db.collection_name.insert(document) db.collection_name.save(document)
查询数据多条数据
db.collection_name.find()
1、可以指定返回的内容
参数解释
db.collection_name.find( {query_term:value}, return_key_name:1} )
a find()函数的第一个参数是查询条件,即匹配该内容的文档都会被筛选出来,如果没有查询条件,则输入{},不可以为空
b find()函数的第二个参数是指定返回的内容,例如一个student的集合中的一个xiaoming文档中包含多条内容,姓名、学生号、家庭住址等,现在我只想看姓名,不想查询的时候返回xiaoming文档的全部内容,就可以使用这种'键名:1'的形式,后面的1表示筛选出该内容并正序输出,0表示筛选出除了该内容的其余部分,-1表示逆序跟1一样的结果
c 可以返回多条记录,这里只是举个例子,还是拿ixaoming的例子
{ 'name':1, 'student_id':1 }
这样就返回了两个信息,一个name,一个student_id
2、查询嵌套信息
结合二维数组理解下面的这个信息
{ 'name':'yang', 'sex':'man', 'skill':[ {'php':1}, {'mongodb':4}, {'redis':5} ], 'favorite_food':'meat' }
其中如果使用skill来作为find()的查询条件的话,千万别写成这样
---错误例子---
db.self.find({'skill':[{'php':1}]})
这样是查不到的,因为这样mongodb会将{'skill':[{'php':1}]}解析成skill数组下只包含'php':1这一条记录的内容,上面的例子明显不符合这一要求,所以查询不到
---正确的例子---
db.self.find({'skill.php':1})
这里使用了 . 告诉mongodb数据库去匹配skill数组下php为1的内容,重点在于skill下是否有'php':1这一条记录
---正确例子2---
如果一定要使用上面的错误例子的方式查询数据,可以使用$elemMatch参数,注意该参数使用的位置
db.self.find({ 'skill':{$elemMatch: {'php':1} } })
这里的$elemMatch是作为条件操作符来使用的
查询单条数据
db.collection_name.findOne()
skip 跳过查询的最开始的数量,limit,限制返回数量,sort,当 x:1 表示正序,x:-1 表示逆序
db.collection_name.find().skip(Number).limit(Number).sort({x:1})
计算符合查询条件的文档的数量
db.collection_name.find().count()
count()函数默认情况下会忽略skip()或limit()函数,例如假设student集合中有4个文档,下面的三条语句将显示不同的结果
db.student.find().limit(1).count()
结果为4,count忽略了limit(1)的条件
db.student.find().limit(1).count(true)
结果为1,为count()传入参数true
获取结果的唯一值
db.collection_name.distinct('key_name')
也是查询的函数,只不过他比起find()会将查询结果显示唯一值,而不是根据原有集合中,文档的数量来显示结果,结合关系型数据库中的distinct来理解,举个例子,有一个图书集合--books,该集合下有书名,作者,出版日期等信息,注意,一个作者可能写了很多本书,现在我想查看在该集合中有多少作者,如果我直接使用上面的find()函数来搜索的话
db.books.find( {}, {'writer':1} )
这样会将全部的作者列出来,但是很多都是重复的,因为find()是根据文档数量来返回结果的,而distinct()会将结果筛选,
其中重复的部分
db.books.distinct('writer')
将查询结果分组
db.collection_name.group()
data1={ "_id" : ObjectId("552a330e05c27486b9b9b650"), "_class" : "com.mongo.model.Orders", "onumber" : "002", "date" : ISODate("2014-01-03T16:03:00Z"), "cname" : "zcy", "item" : { "quantity" : 1, "price" : 4.0, "pnumber" : "p002" } } data2={ "_id" : ObjectId("552a331d05c275d8590a550d"), "_class" : "com.mongo.model.Orders", "onumber" : "003", "date" : ISODate("2014-01-04T16:03:00Z"), "cname" : "zcy", "item" : { "quantity" : 10, "price" : 2.0, "pnumber" : "p001" } } data3={ "_id" : ObjectId("552a333105c2f28194045a72"), "_class" : "com.mongo.model.Orders", "onumber" : "003", "date" : ISODate("2014-01-04T16:03:00Z"), "cname" : "zcy", "item" : { "quantity" : 30, "price" : 4.0, "pnumber" : "p002" } } data4={ "_id" : ObjectId("552a333f05c2b62c01cff50e"), "_class" : "com.mongo.model.Orders", "onumber" : "004", "date" : ISODate("2014-01-05T16:03:00Z"), "cname" : "zcy", "item" : { "quantity" : 5, "price" : 4.0, "pnumber" : "p002" } } db.orders.insert(data1) db.orders.insert(data2) db.orders.insert(data3) db.orders.insert(data4)
接下来展示group()
函数
例1
db.orders.group({ key:{data:1,'item.pnumber':1}, initial:{'total':0}, reduce:function (doc,out){ out.total+=doc.item.quantity } })
首先是按照data和ietm数组中的pnumber分组
接着定义了输出变量total,记录每个产品的总数
接着是定义处理函数,也就是reduce中的函数,注意,传入参数的先后顺序,第一个参数表示当前进行分组的文档,第二个参数表示initial,所以doc能直接调用doc.item.quantity,即文档的内容,out能调用out.total,即initial的内容
例2
db.orders.group({ keyf:function(doc){ return {'month':doc.date.getMonth()+1}; }, initial:{'total':0,'money':0}, reduce:function (doc,out){ out.total+=doc.item.quantity*doc.item.price }, finalize:function (out){ out.avg=out.money/out.total; return out; } })
首先,这个例子展示了keyf的用法,他返回了一个新的字段--month,接下来mongodb会按照month的计算结果分类
接着,就是在keyf以及finalize的函数中都有传入参数,其实这个参数跟reduce中的参数名字没有关系,这里写在一起主要是为了便于理解其含义
最后就是在finalize中临时创建了一个变量avg,这个avg在最后也是会被输出的
最后一点,在函数中处理结果都是会被return的
----------------使用条件操作符来筛选查询结果------------------
一般情况下都使用在find()的第一个参数内部,作为筛选条件使用
---$gt,$lt,$get,$lte,$ne---
db.collection_name.find( { key_name:{$gt:value} })
注意操作符的位置,看例子可以便于理解
db.student.find( { 'height':{$gt:180} })
表示筛选出学生集合中身高高于180的学生
可以同时使用两个操作符来指定范围
db.student.find({ 'height':{$gt:180,$lt:220} })
这两个的使用方法跟上面是一样的,但是需要单独拎出来讲,因为有点特殊
---$in,$nin---
db.student.find({ 'height':{$in:[170,180,190,200]} })
表示筛选出身高为170,180,190,200的学生,$nin就是筛选除了170,180,190,200之外的学生
---$all---
上面的$in中的内容是‘或'的形式,只要你的身高是170,或180,或190,或200,那么你就符合筛选条件,而$all则是且的关系
db.student.find({ 'height':{$all:[170,180,190,200]} })
这句话的意思是你的身高既是170,又是180,又是190,又是200才能满足条件
---$or---
db.student.find({ $or:[ {'score':100}, {'sex':man} ] })
上面的例子中,score:100与sex:man是‘或'的关系,结合下面的例子就可以看出$or的作用了
db.student.find( {'score':100,'sex':'man'} )
其中的score:100与sex:man是且的关系
limit(x)
函数加skip(y)
函数=$slice:[y,x]
具体使用方法可以看下面这个例子
db.student.find( {}, {'height':{$slice:[10,5]}} )
还是那句老话,注意$slice的位置,这句话表示筛选身高第11到15的人,第一个参数是skip()的参数,第二个是limit()
limit()
函数是限制返回文档的数量的,$size是筛选符合数量的数组的,看下面的例子就明白了
先在数据库中添加以下信息
message={ 'cds':[ {'first_song':'hello'}, {'second_song':'world'}, {'third_song':'again'} ] } db.songs.insert(message)
接着我们来查询一下上述结果
db.songs.find( {'cds':{$size:2}} )
无返回结果,因为cds数组里有3组数据
db.songs.find( {'cds':{$size:3}} )
返回全部结果,注意一点,这里是作为find()函数的第一个参数传入的,所以是筛选条件
筛选含有特定字段的值
db.collection_name.find( { key_name:{$exit:true} })
返回存在该字段的文档,注意,这里是存在该字段,而没有指定该字段的具体内容
根据数据类型筛选返回结果
db.collection_name.find( { 'key_name':{$type:x} })
其中的x取值内容有很多,这里就不介绍了,因为太多了看一遍也没用
在筛选中使用正则表达式
db.collection_name.find( { 'key_name':/ / })
在/ /中添加正则表达式的内容
更新数据
db.collection_name.update({original_key:original_value},{new_key:new_value})
1、只要原 collection 中包含 original_key:original_value 就会被选中成为操作对象
2、整个 collection 都会被更新成 new_key:new_value ,而不单单就只是更新 original_key:original_value
相较于上面会更新整个集合,下面添加了 $set: 的形式来只进行部分字段的更新
db.collection_name.update({original_key:original_value},{$set:{new_key:new_value}})
上面使用$set更新了一条字段,可以使用$unset删除一条字段
db.collection_name.update{ {}, {$unset:{key:value}} }
如果此更新数据不存在就创建这一条数据,加第三个参数为 true 就可以实现了
db.collection_name.update({original_key:original_value},{new_key:new_value},true)
或者下面的形式也可以
db.collection_name.update({original_key:original_value},{new_key:new_value},{upsert:true})
update 只会更新第一条满足条件的记录,但是想更新多条记录时,将第三个参数设置为 false,第四个参数设置为 true,而且还要设置 $set
db.collection_name.update({original_key:original_value},{$set{new_key:new_value}},false,true)
------------------插入数据——数组部分--------------------
插入数据
db.collection_name.update( {original_key:value}, {$push:{ new_key:new:value }} )
注意,如果original_key不存在,则会被创建,并且定义为数组的形式,new_key:value则是第一个值
如果original_key存在,并且数数组,则插入new_key:value,如果不是数组,则报错
一次性插入多个值,前面是使用$push一次插入一个值,如果想插入多个值的话,需要使用下面的内容
db.collection_name.update( {original_key:value}, {$push:{ new_key:{ $each:[ 'value1', 'value2', 'value3' ] } } })
注意这里的$push是针对数组操作的,也就是$each后面的内容都将添加到new_key的数组中
与$push对应,$pop删除数组中的数据
db.collection_name.update( {original_key:value}, {$pop:{ {original_key:1} } })
注意,这里的1表示删除的数量,可以是2,3等整数,表示从数组的后端开始删除,也可以是-1等负数,表示从数组的前端开始删除
前面的$pop可以指定删除的数量,但是不能指定删除的条件,$pull则可以
db.collection_name.update( {original_key:value}, {$pull: {key1:value1} } )
$pull会删除掉key1中所有value1的数据,注意,是删除key1中的value1数据,不是删除key1,所以只要key1数组中包含了value1就会被删除掉value1
与$pull类似,$pullAll可以删除掉多个数据
db.collection_name.update( {original_key:value}, {$pullAll:{ key1: [ 'value1', 'value2', 'value3' ] } })
$addToSet是一个非常实用的向数组添加数据的命令,如果该数据不存在则添加,存在就不会重复添加了
db.collection_name.update( {original_key:value}, {$addToSet:{ new_key:{ $each:[ 'value1', 'value2', 'value3' ] } } })
设想一下,如果这里不添加$each的情况,如果不添加$each,则会变成往数组new_key中直接添加新的数组
['value1','value2','value3']
可以尝试一下,理解$each的功能,回到$addToSet上来,如果原数组中就存在value1,value2,value3则不会添加,如果不存在,则将没有的添加进去,有的也不会重复添加,彼此之间不是互相影响的。
原子操作
这里就不解释什么叫原子操作了,对于我们使用者来说只要知道怎么采用原子操作就可以了
db.collection_name.findAndModify( { query:{key:value}, sort:{key2:1/-1}, update/remove:true, new:true } )
query 指定查询的文档
sort 排序,1,-1的含义这里就不解释了,跟上面一样
update/remove 表示操作
new 表示返回最终的修改结果,可以不填
删除所有查找到的数据
db.coolection_name.remove({key:value})
删除一张表
db.collection_name.drop()
查看集合的索引
db.collection_name.getIndexes()
创建索引
db.collection_name.ensureIndex({key:value})
前面是根据key:value
的形式创建索引的,接下来就为一集合的某一字段全部创建索引
db.collection_name.ensureIndex({key:1})
复合索引的创建就是在其中多添加几个内容
删除索引
db.collection_name.dropIndex({key:value})
删除所有索引
db.collection_name.dropIndexes()
前面我们操作的都是一个集合,接下来我们要学习简单的操作多个集合了,有两种方式,手动或者使用DBRef
先创建两个集合
collection1={ 'name':'yang', 'sex':'man' } collection2={ 'id':1, 'name':'yang', 'math':60, 'pe':30, 'chinese':60 } db.student.save(collection2) db.yang.save(collection)
接下来就是大致思路了
yang=db.yang.findOne() db.student.find( {'name':yang.name} )
mongodb不支持像传统的关系型数据库那样的多表操作,mongodb都是需要先将数据保存好,再来调用的,如上面的yang保存的就是find()查询所需要的内容,需要先将数据从数据库中读出保存好再来调用,其中yang.name就等于'yang'
接下来就是使用DBRef引用数据库了,调用DBRef需要传入三个参数,第一个调用的collection_name,id,db_name,这个可选,还是上面的这个例子,接下来使用DBRef的方式,这玩意我搞不定
希望本文所述对大家MongoDB数据库程序设计有所帮助。