three.js 利用uv和ThreeBSP制作一个快递柜功能

网络编程 发布日期:2025/1/10 浏览次数:1

正在浏览:three.js 利用uv和ThreeBSP制作一个快递柜功能

最近有three网友,问我要不要学习blender,其实我感觉学习一下也无妨,不过花大量时间精通,尚可不必,术业有专攻给别人留一条路吧,哈哈。那我我们就是用ThreeBSP和uv贴图的知识来制作一个定制化的快递柜,先上图,在线案例请点击博客原文。

three.js 利用uv和ThreeBSP制作一个快递柜功能

下面我们来讲解一下这样一个柜子的制作。

1. 主角是一个JSON

这样一个快递柜的核心是JSON数据的创建,有了jSON数据,我们就可以通过循环遍历出柜子,柜门和uv映射关系。那面下面来看看我们的JSON数据(部分代码)。

var doorArray = [
  [94, 10, -176, 196, false], [94, 10, -76, 196, false], [94, 10, 76, 196, false], [94, 10, 176, 196, false], [46, 15, 0, 186, false], [46, 60, 0, 147, false],
  [46, 21, 0, 105.5, true], [46, 10, 0, 89, true], [46, 10, 0, 78, true], [46, 20, 0, 62, true], [46, 20, 0, 41, true], [46, 20, 0, 20, true]
]

他是以一个数组的形式表现的,每一个数组代表一个柜子数据,每一个数组中的第一项为当前柜子宽度,第二项为高度,第三项为中心x位置,第四项而中心y位置,第五项为柜子是否能打开(因为有的地方为操作面板等)。

2. ThreeBSP绘制柜子的整体架构。

说完核心,我们在看看柜子的整体框架。下面是柜子的侧面图,通过侧面图我们可以很清晰的看出我们做了什么

three.js 利用uv和ThreeBSP制作一个快递柜功能

其实加的不多,就是在上面加了一个檐,下面加了两个底座,还有就是在每个小快递柜中掏出一个洞。
我们看代码

var texture = new THREE.TextureLoader().load('/static/images/base/cabinet.jpg')
let pubMate = new THREE.MeshNormalMaterial();
let frameGeom = new THREE.BoxGeometry(450, 200, 50);
let frameMesh = new THREE.Mesh(frameGeom, pubMate);
frameMesh.position.y = 106;

let footShape = new THREE.Shape();
footShape.moveTo(0, 2);
footShape.lineTo(8, -2);
footShape.lineTo(8, -4);
footShape.lineTo(0, -4);
footShape.lineTo(0, 0);
footShape.lineTo(-12, 0);
footShape.lineTo(-12, 2);
footShape.lineTo(0, 2);

let footExtrudeSettings = {
  steps: 5,
  depth: 450,
  bevelEnabled: false
};
let footGeom = new THREE.ExtrudeGeometry(footShape, footExtrudeSettings);
let footMesh = new THREE.Mesh(footGeom, pubMate);
let footMesh1 = footMesh.clone();
footMesh1.rotation.y = -Math.PI / 2;
footMesh1.position.x = 225;
footMesh1.position.y = 4;
footMesh1.position.z = 25;
let footMesh2 = footMesh.clone();
footMesh2.rotation.y = Math.PI / 2;
footMesh2.position.x = -225;
footMesh2.position.y = 4;
footMesh2.position.z = -25;

let headGeom = new THREE.BoxGeometry(450, 5, 20);
let headMesh = new THREE.Mesh(headGeom, pubMate);
headMesh.position.z = 23;
headMesh.position.y = 206 - 2.5;

let framebsp = new ThreeBSP(frameMesh);
let foot1bsp = new ThreeBSP(footMesh1);
let foot2bsp = new ThreeBSP(footMesh2);
let headbsp = new ThreeBSP(headMesh);

res = framebsp.union(foot1bsp).union(foot2bsp).union(headbsp);

for(var i=0; i<doorArray.length; i++) {
  let geom = new THREE.BoxGeometry(doorArray[i][0]-1, doorArray[i][1]-1, 50);
  let mesh = new THREE.Mesh(geom, pubMate);
  mesh.position.set(doorArray[i][2], doorArray[i][3], 4)
  let meshbsp = new ThreeBSP(mesh);
  res = res.subtract(meshbsp);
}

let cabinetGeom = res.toGeometry();
let cabinetMate = new THREE.MeshPhongMaterial({color: 0xD8C513, specular: 0xD8C513, shininess: 10});
let cabinetMesh = new THREE.Mesh(cabinetGeom, cabinetMate);
cabinetMesh.position.y = 106;

scene.add(cabinetMesh);

这里就是在框架BoxGeometry的基础上加了两个底座ExtrudeGeometry,和一个檐BoxGeometry,然后遍历减去小柜子。掌握好各自的空间位置,制作其实并不难。

3. 柜子的统一贴图

将一张图作为贴图,贴到所有的mesh上,如最上面图的效果,因为上节课已经大致的说了关于uv的一点知识。

for(var i=0; i<doorArray.length; i++) {
    let a0 = doorArray[i][0];
  let a1 = doorArray[i][1];
  let a2 = doorArray[i][2];
  let a3 = doorArray[i][3];

  let x1 = ((a2 - a0 / 2) + 223) / 446;
  let x2 = ((a2 + a0 / 2) + 223) / 446;
  let y1 = ((a3 - a1 / 2) - 10) / 191;
  let y2 = ((a3 + a1 / 2) - 10) / 191;

  doorMesh.geometry.faceVertexUvs[0][8] = [new THREE.Vector2(x1, y2), new THREE.Vector2(x1, y1), new THREE.Vector2(x2, y2)];
  doorMesh.geometry.faceVertexUvs[0][9] = [new THREE.Vector2(x1, y1), new THREE.Vector2(x2, y1), new THREE.Vector2(x2, y2)];
}

上面已经说过,这里的a0是柜子的宽,a1是柜子的高,a2是柜子中心x的坐标值,a3是柜子中心y的坐标值。因为柜子整体x的范围是[-223, 223],y的范围的[10, 201]。经过换算x1是纹理x坐标的最小值,x2是纹理x坐标的最大值,y1是纹理y坐标的最小值,y2是纹理y坐标的最大值,最后设置数组索引为8和9小三角面的uv映射(因为我们要设置的面为长方体的左面,就是8和9控制的面)。

最后加上一点点开柜子的动画就大功告成了。

转载请注明地址:郭先生的博客